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Abstract
We propose a complete image-based process that facilitates recovery of both gross-scale geometry and local
surface structure to create highly detailed 3D models of building façades from photographs. We approximate both
albedo and sufficient local geometric structure to compute complex self-shadowing effects, and fuse this with a
gross-scale 3D model. Our approach yields a perceptually high-quality model, imparting the illusion of measured
reflectance. The requirements of our approach are that image capture must be performed under diffuse lighting and
surfaces in the images must be predominantly Lambertian. Exemplars of materials are obtained through surface
depth hallucination, and our novel method matches these with multi-view image sequences that are also used to
automatically recover 3D geometry. In this paper we illustrate the effictiveness of our approach through visually
realistic reconstructions of historic buildings in two test cases, together with a table showing the breakdown of
effort required to reconstruct each.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture;

1. Introduction

Existing techniques for building complete 3D models in-
volve a tradeoff between the quality of the recovered mod-
els and the amount of effort and cost to create them. The
accepted way to create a high-quality model is to use a
laser scanner and reflectance measurement equipment, but
this requires both expensive equipment and significant ef-
fort for both data capture and final model assembly. In con-
trast, image-based approaches offer the promise of low-
cost equipment, simple capture requirements and automated
model assembly. The challenge for image-based methods
is to build complete models with sufficient local detail that
compare favourably with more labour intensive approaches.
Few current methods exist to easily capture and incorpo-
rate local detailed surface meso-structure, such as cracks and
protrusions in stone walls, necessary to create realistic ap-
pearance under novel lighting. Often, surface detail is con-
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veyed by textures recovered from images, whose appearance
is only valid under the originally photographed viewing and
lighting conditions.

Figure 1: Eagles and Jaguars model reconstructed with our
system and rendered under novel lighting conditions.
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Figure 2: Overview of our façade modeling pipeline.

Furthermore, while texture includes colour information,
separating diffuse reflectance albedo from lighting is an in-
herently ill-posed problem. This separation is key to con-
veying visual realism of textured surfaces under novel light-
ing. In this paper, we present a largely automatic process for
recovering visually faithful, relightable models of building
façades from photographs. A key aspect of our process is
that it uses only simple digital SLR equipment and has low
data capture and labour requirements, requiring only diffuse
lighting (cloudy skies) and predominantly Lambertian ma-
terials. Our novel contribution is the use of an image-based
statistical transfer method for approximating surface detail
for entire building façades from material appearance mod-
els captured at close range. This transfer technique can be
easily incorporated into other image-based 3D reconstruc-
tion pipelines to improve the visual richness of reconstructed
scenes. The remainder of this paper provides an overview of
our implementation, explains our appearance transfer pro-
cess, and shows the effectiveness of our method through re-
constructions of two historic sites: the platform of the Eagles
and Jaguars, from the Ancient Mayan site of Chichén Itzá,
Mexico; and Clifford’s Tower in York, UK.

2. System Overview

An overview of our 3D reconstruction pipeline is shown
in Figure 2 and described in detail later in this paper.
The pipeline has three main stages: gross-scale geometry
capture; material appearance capture, including albedo and

meso-scale geometry; and texture recovery and material ap-
pearance transfer. For the first two parts, our implementation
builds upon existing approaches, the third part (shaded green
in Figure 2) details our contribution.

Our 3D reconstruction system obtains a quasi-dense point
cloud, camera parameters for each photograph, and a cor-
responding surface mesh for the photographed structure. A
brief overview of this is given in Section 4. We refer to the
3D model recovered from this part of the system as gross-
scale geometry, and in the context of our pipeline this rep-
resents the global 3D shape of the acquired façade (shaded
lilac in Figure 2). To complement this global shape infor-
mation with surface detail, we first begin by capturing ac-
cessible samples (at close range) of the different textured
materials present in the façade, by applying surface depth
hallucination [GWJ∗08]. This yields exemplars for each ma-
terial consisting of both albedo and meso-structure (blue-
green shading in Figure 2). Using the reconstructed model
and camera parameters we create a high-resolution texture
mosaic for the complete model from the multi-view image
sequence by selecting the best view for each texel. Next we
segment the texture mosaic image and assign materials to
appropriate exemplars. We then transfer albedo and shading
from the exemplars to the segmented texture using histogram
matching. Finally we estimate a depth map from the trans-
ferred shading image, which can either be fused with the
gross-scale geometry or rendered as a bump map. The fine
detail in the complete 3D model results in a visually rich and
faithful appearance of the original surfaces.
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After data capture our entire process, with the exception
of segmentation, is fully automatic. To provide context for
our contribution, we briefly discuss prior work spanning the
three sections shown in our 3D reconstruction pipeline.

3. Previous work

Gross-scale geometry recovery from images uses es-
tablished methods in the computer vision and graph-
ics literature. These methods fall broadly into semi-
automatic [DTM96,GHCH03,DTC04,SSS∗08] and fully au-
tomatic approaches [FZ98, Nis05, PvV∗04, LQ05, Liu07]. In
recent years, the focus of research has shifted to automatic
methods that take advantage of large photo collections from
the Internet to reconstruct buildings [GSC∗07, SSS06] and
even cities [ASS∗09], but unlike earlier methods these often
create sparse point clouds. Furukawa et al. [FCSS10] applied
dense matching to large data collections and improved the
density of the final point-clouds. The combination of resolu-
tion limitations and the problem that densely matched point
clouds are noisy in comparison to laser-scanned data, means
that it is difficult to recover high quality meso-structure. Our
implementation uses the method of Liu [Liu07] to obtain
gross-scale geometry, but in principle any of the cited meth-
ods could be substituted in our pipeline. These techniques
are flexible, mostly automatic, and provide good models of
gross-scale 3D geometry. But, they also involve a trade-off
between the resolution of the recovered model and the size
of the scene. This motivates our approach to recover meso-
scale detail through a complementary approach, and to com-
bine the gross-scale and meso-scale models.

The problem of capturing surface appearance at meso-
scale has spawned several approaches. The gold standard is
the approach of Dana et al, who digitised small patches of
rough, textured surfaces, creating a variation of the BRDF
called the Bidirectional Texture Function (BTF) [DMP∗00].
This involves capturing images for many different viewing
and lighting directions, requiring special equipment, a care-
fully controlled environment, and resulting in a high stor-
age cost. This is impractical for our purposes. A simpler al-
ternative is to use photometric stereo, which provides both
albedo and surface normal orientation from a single view-
point [Woo80], and has inspired a number of similar ap-
proaches [RB99, PCF05, WG09]. These usually require a
camera/multi-flash rig for data capture. A more straightfor-
ward approach using a single flash, but delivering perceptu-
ally validated surface appearance models consisting of both
per-pixel depth and albedo was published by Glencross et
al [GWJ∗08]. These methods capture only relatively small,
globally flat samples of surfaces, and/or require controlled
lighting, which makes them impractical for direct applica-
tion to large façades. Our paper presents an extension of
these previous methods to overcome these limitations.

The third stage of our reconstruction pipeline is texture
recovery and material appearance transfer. Obtaining the

best texture from multi-view images is a common problem
in image-based reconstruction systems [BMR01, CCRS02,
LI07, BFA07]. The objective is to use the best view per tri-
angle while minimizing the seams between views. Mosaic
composition is a similar problem, where images from dif-
ferent viewpoints are combined together to produce a seam-
less image. Agarwala el al. [ADA∗04] presented a Markov
Random Field formulation for image stitching and mosaic
composition, where an energy function is minimized. In
our work, we apply a similar formulation to Agarwala et
al [ADA∗04], but to the multi-view texturing problem. Tex-
ture alone cannot capture material appearance, except under
the specific lighting conditions of image capture. To achieve
estimates of albedo and surface depth for entire façades
we draw inspiration from previous work in texture trans-
fer [EF01,MKC∗06] and texture synthesis [HB95,DB97] to-
gether with the work of Glencross et al [GWJ∗08]. The latter
work demonstrated how to transfer shading and albedo from
a sample to a single image of a similar material at a simi-
lar scale. This forms the basis of the approach in this paper,
but we further extend it to function with large scale changes,
multiple materials, and non-orthogonal views. We are not
aware of any approaches dealing with the specific problem
of transferring albedo and depth over a large scale change. In
the following three sections we describe our system details.

4. Gross-scale Geometry Recovery

Our system uses a wide-baseline 3D reconstruction approach
which solves three specific problems: estimating 3D depth,
combining small reconstructions into a larger model, and
surface fitting. We briefly outline each of these in turn.

The input to our system is an unordered collection of
wide-baseline images. Capturing suitable input image se-
quences is straightforwardly performed with a hand-held
camera. There is a trade-off between the number of images
used, image resolution, performance, and maximizing fea-
tures matched between images. Our system requires each
region to be visible and matched in at least three images
to be reconstructed. We typically capture successive im-
ages with 70% overlap. For depth estimation, our system
uses fully automatic algorithms to first find feature corre-
spondences [Low99]. To these we apply a robust multi-view
stereo method to obtain all camera parameters, and a 3D
point cloud that forms the basis of our gross-scale geome-
try [HZ03]. In our implementation, the initial 3D point cloud
acquired by using the originally matched features is used to
seed a phase analogous to dense correspondence yielding a
quasi-dense representation [Liu07]. In principle, the incre-
mental nature of the reconstruction algorithm can handle an
arbitrary number of input images; in practice however, this
is memory-limited. The bundle adjustment stage, where 3D
point positions and camera parameters are optimised itera-
tively, is the most memory-demanding component in the re-
construction pipeline, increasing linearly with respect to the
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total number of 3D points and number of cameras. This lim-
its the number of points that can be constructed in a single
sequence to around 1 million resulting in a total memory
footprint of around 4GB. Since the SLR camera we use pro-
vides 3900× 2616 pixel resolution, we scale these images
down to 20% or 30% to reconstruct the gross-scale geome-
try, allowing us to use around 20 to 40 images for a typical
reconstruction.

Recovering larger more complicated façades may require
more input images, and to deal with such scenes we align
partial reconstructions. This is also a common problem for
scanned data [Fit03, IGL03, BL04]. In our case, we simplify
the problem by including a common image in consecutive re-
constructions, which provides the correspondence between
sequences by comparing the reprojected points in 2D from
both sequences in the common image. Given these corre-
spondences, we find the rigid transformation between both
models. We use the robust RANSAC method (Random Sam-
ple Consensus) to obtain a good initial estimation and reject
outliers. Then we use non-linear least-squares minimisation
to find the transformation that best fits the remaining data.
By merging partial reconstructions we are able to reconstruct
large scenes with appropriate point density on a desktop PC.

Since the raw output (a 3D point cloud) from the recon-
struction process is somewhat noisy and not uniform, we ob-
tain a gross-scale model by applying Poisson surface recon-
struction to obtain a triangulated implicit surface [KBH06]
enforcing continuity and smoothness. Normally we need to
perform some simple manual cleaning of the resulting mesh,
to crop the areas that we are interested in, using Mesh-
Lab [CCR08].

5. Capturing Surface Appearance

Since the gross-scale 3D reconstruction is not able to reliably
capture albedo and meso-scale surface detail, we acquire a
set of material appearance models that are representative of
the textures contained in the façade. We use the acquisition
method detailed in Glencross et al [GWJ∗08]. Although this
provides models containing albedo, shading and per-pixel
depth, we only make use of the histograms of the albedo
and shading images for our application. Input data for gen-
erating these texture exemplars is captured in RAW format
at an accessible location and where the gross-scale geometry
is flat. We use a standard digital SLR camera mounted on a
tripod and an attached shoe-mounted flash unit. A no-flash
(ambient) capture is first obtained, and then a corresponding
photograph from the same viewpoint is taken with the flash
unit fired, ensuring correct exposure. For further details of
how to capture and process exemplars we refer the reader to
the original publication. Figure 3 shows an example surface
appearance model for one of the test case sites reconstructed
to evaluate our work.

(a) Captured Albedo Map. (b) Captured Shading Map.

Figure 3: A typical exemplar captured for the Eagles and
Jaguars reconstruction model using Surface Depth Halluci-
nation

6. Texture Recovery and Material Appearance Transfer

In this section we describe the three novel steps that we in-
troduce into our 3D reconstruction pipeline. These are multi-
view texturing, transfer of shading and albedo and meso-
scale geometry hallucination. Since our intention is to obtain
estimated albedo and shading images for an entire façade,
and from this to infer meso-scale detail, we need to solve a
number of problems. The first is how to construct a texture
map for the façade which incorporates the best views for
depth hallucination. The second is how to transfer the statis-
tical characteristics of the albedo and shading images of the
exemplar to the texture map for the façade. The final prob-
lem is how to combine both the gross-scale and recovered
meso-scale into a coherent model.

6.1. Multi-view Texturing

To obtain the best possible texture map from all the view-
points available in the original images we adapt multi-view
texturing methods to suit our application. In common with
other applications, we want a texture parameterization that
minimizes distortion and scaling of the triangles. We use
the free software Graphite [GRA09] to first create a flat pa-
rameterization of our model, allowing for cuts in the ge-
ometry to improve the mapping. Next we create a geome-
try image [GGH02] of the surface mesh. This is the process
of sampling the geometry regularly in the parameterization
space, encoding the geometry in an image, where RGB chan-
nels codify XYZ coordinates. Having the geometry in such a
regular structure has the benefit that we can back-project the
geometry to every view and obtain a per-view texture map
for the complete model, accounting for visibility.

Having every view in the same parameter space, allows
us to define an energy function to be minimized. This en-
ergy function consists of two cost functions: the data cost
and the smoothness cost. The first term represents the cost of
assigning a camera view to a texel. We encode in this term
the quality of the texel for each view. The closer to fronto-
parallel the view, the lower the cost. We use the inverse of
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the area of the pixel in the reprojected view to measure this,
which accounts for perspective and distance to the camera.

The second term determines the cost of assigning differ-
ent cameras to neighboring texels, encoding the Euclidean
distance in RGB space between the two texels as in Agar-
wala et al [ADA∗04]. This term has the effect of mini-
mizing the seams due to texture changes arising from dif-
ferent photographs. To avoid discontinuities in the texture
map we define the pixel neighbourhood using an indirec-
tion map [LH06] that takes account of the separation be-
tween charts in the texture map. We use graph-cut optimiza-
tion [BVZ01] to obtain a close-to globally optimal solution.
By combining these two energy terms, we strike a good bal-
ance between optimal views and the avoidance of seams.
Figure 4 shows the reconstructed texture for the Eagles and
Jaguars model.

Figure 4: Combined Texture map from multi-view images.

We typically create a final texture mosaic of 7000×7000
pixels but we allow the process to create an arbitrary res-
olution for the final texture map. During the optimization
process we need to instantiate in memory the data cost maps
for every view. Since the number of views can be large, we
run the optimization at a lower resolution depending on the
number of views, and then we scale up the association map
and sample the texture map at full resolution.

6.2. Transferring Shading and Albedo

Armed with exemplars of the different materials present in
the façade and a unified texture map, we need to first seg-
ment the texture mosaic and associate the different segments
with their respective materials. We employ standard interac-
tive techniques to separate the different regions and create a

simple text file to associate every segment with its material
exemplar. The user takes the exemplars as references and
select regions in the texture map containing similar global
appearance and meso-structure. When the boundaries be-
tween materials are well defined, semi-automatic segmen-
tation techniques such as graph-cuts [BVZ01] can be used.
When materials are not easily differentiable, a closer user su-
pervision is required to adequately segment the texture. We
used GIMP † to generate the results for this paper.

Next, we automatically histogram-match segments with
their exemplars [HB95]. This is a key stage in our process
since we solve two problems. First, we provide the correct
material appearance statistics for local shape estimation via
surface depth hallucination, and second we estimate albedo,
providing a close approximation to diffuse reflectance. Our
approach is motivated by the idea that the image statistics of
similar surfaces under diffuse lighting encode information
about shading and albedo, and that appearance and depth
under such lighting conditions are closely correlated.

Histogram Matching equalizes the shape of the histogram
of an image to approximate the shape of another histogram
– in this case provided by the exemplar – by matching the
their cumulative distribution functions. We use a 256-bin
histogram and match the different RGB channels separately.
When transferring shading we use the luminance channel
of the texture map. This process matches the statistics for
each material to those of its associated exemplar, enabling
subsequent shape and albedo approximation. The validity of
this recombined histogram-matched albedo image depends
on how well the global statistics of the segments match the
statistics of the exemplar. It is advisable to create a larger
number of smaller segments to adequately match the exem-
plars. In the models included in this paper, an average of 17
segments were used.

6.3. Meso-scale geometry hallucination

The shading image estimated for the full façade is used to
compute a per-pixel depth map that we superimpose on the
gross-scale model. Applying this technique directly, as pre-
viously published, results in some artifacts visible as exces-
sively bumpy depth maps. There are two reasons for this.
First, even under diffuse lighting conditions, large features in
the building can cast soft shadows on the façade. Such fea-
tures are already captured by the gross-scale geometry, so
should be omitted from the depth map. Second, areas with
dark appearance may be due to dark albedo but may instead
be interpreted as areas in shade. If these areas are large they
also need to be removed from the depth map.

We observe that both artifacts correspond to low frequen-
cies in the texture map. Consequently, we correct the shad-
ing image by filtering out the low frequencies, achieved by

† http://www.gimp.org
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dividing the shading image by a Gaussian blurred version
of itself. This filtering preserves the required meso-scale de-
tail. The depth computation, following the multi-scale model
from [GWJ∗08], is then applied resulting in a per-pixel depth
map that we render as a bump map over the gross-scale
model.

7. Results

The final models acquired with our method contain a high
level of detail in the recovered geometry, and approximate
albedo, providing rich appearance under novel lighting con-
ditions. This improves the results of both gross-scale geom-
etry acquisition, and surface depth hallucination, used in iso-
lation. Our method is able to capture interesting surface fea-
tures, like the reliefs in the façades in Figures 1 and 7, that
would be labour intensive to generate manually. Estimates
for the breakdown of effort for the models included in this
paper is presented in Table 1. The complete process takes
around one day of work including capture and processing,
the segmentation process being the most time consuming.

Table 1: Breakdown of effort. York1 and York2 = Respec-
tively, Exterior and Interior Façades of Clifford’s Tower,
E&J = Eagles and Jaguars Platform. (A) = Automatic.
(I) = Interactive. Processing over 7K ×7K pixels Textures.

York1 York2 E&J
No Images Gross-scale 33 7 19
No Exemplars 5 6 1
No Segments 16 17 18
Capture Gross-scale 30min 10min 20min
Capture Exemplars 1h 1h 10min
Process Gross-scale(A) 1.5h 30min 1h
Model Cleaning(I) 1h 20min 1h
Texturing(A) 15min 15min 15min
Segmentation(I) 3h 3h 3h
Transfer(A) 15min 15min 15min
Depth Estimation(A) 1min 1min 1min
TOTAL Reconstruction
Time

7h 15min 5h 15h 6h

Figure 5 shows visual comparisons for one of the pan-
els in the Eagles and Jaguars model reconstructed using
different techniques. Our combined model (5(a)) is able
to recover both global depth and local detail, while the
model containing only the gross-scale (5(d)) fails to re-
cover meso-structure. Comparing with [DTC04] – consid-
ered the gold standard in automatic multi-view reconstruc-
tion – their model (5(c)) provides sharper geometry than our
gross-scale model, but introduces artifacts at the fine detail
level. Our transfer system provides more detailed and co-
herent meso-structure. Depth Hallucination (5(b)) captures
high-resolution local detail, but is not able to model the
global structure due to the flat-surface assumption.

(a) (b)

(c) (d)

Figure 5: (a) Close-up view of panel reconstructed with our
transfer system, (b) using Depth Hallucination [GWJ∗08],
(c) reconstructed with [DTC04], (d) gross geometry without
meso-scale detail.

Figure 6 shows the plausibility of the appearance recov-
ered with our system by comparing side-by-side a photo-
graph of Clifford’s Tower ‡ with a rendering of the model
under approximately matched lighting conditions.

Figure 6: (Left) Photograph of Clifford’s Tower downloaded
from Internet, (Right) Synthetic Rendering under similar
lighting conditions.

8. Limitations and Future work

For the results in this paper, gross-scale geometry was re-
constructed using wide-baseline photographs, offering the
advantage of simple data capture. Better results might be ob-
tained from using other systems, such as ARC3D [DTC04]
to acquire gross-scale geometry, although these involve other
tradeoffs. Fortunately, our transfer methods can be easily ap-
plied to models captured with other systems.

‡ http://www.nicolaconforto.com/erasmus/img/york20080927
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Figure 7: Clifford’s Tower Model reconstructed with our
system, including exterior and interior façades, rendered un-
der different view-points and lightings. We captured 10 ma-
terials for these reconstructions shown right-middle.

In our system, segmentation still requires some effort
from the user. More sophisticated methods that perform au-
tomatic segmentation by matching against the exemplars are
part of our current investigations.

Since our method relies on histogram matching for both
albedo estimation and computing the shading image, the ef-
fectiveness of the technique depends on the quality of match
between the exemplar and associated segment. This is es-
pecially important in the albedo computation, since a poor
match will result in the wrong color appearance. Other trans-
fer methods that provide local rather than global matching
may relax this limitation.

Finally, creating a library of exemplars would further sim-
plify the capture process, by avoiding the need to recapture
samples. It would also allow users to enhance existing 3D
models.

9. Conclusions

We have described a novel method for constructing models
of buildings from photographs. Our method extends existing
approaches for geometry acquisition by adding image-based
estimation of local depth and albedo. We illustrated this by
applying it to capturing both the geometry and detailed ap-
pearance of building façades. We showed how the enhanced
geometric detail contained in our 3D models enables com-
putation of complex self-shadowing effects. Although this
detail is approximate, it is informed by shape information
contained in the statistics of the photographs. Our use of
histogram matching to obtain albedo is a step forward in
separating lighting from geometry in images. Uniquely, the
method mitigates the limitations of image-based 3D recon-
struction and surface depth hallucination by fusing informa-
tion captured at different scales. This combination provides
relightable 3D models for a range of cultural heritage, visu-
alization and entertainment applications.
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