Managing the Complexity of Physically Based
Modelling in Virtual Reality

M ashhuda Glencross and Alan Murta

Advanced Interfaces Group
Manchester, UK

Abstract

Physically based simulation has been used to a limited
degree in virtual reality (VR) because of the perfor-
mance demands imposed by the real-time requirement.
Simulating complex physical models in VR is attractive
as it adds a richness of detail to virtual environments
which is valuable in a number of application areas.

In order to successfully use physical simulation in
VR it is essential to reduce the computational cost.
To this end we describe methods for minimising the
complexity of models prior to and during simulation.
We illustrate adaptive variation in complexity by
dynamic addition and removal of primitives from a
Newton’s cradle model. A sequence of images is used
to show this technique performs sufficiently well to
enable user interaction with the cradle.

Keywords: physically based, rigid bodies, par-
ticle systems, dynamic restructuring, virtual real-
ity.

1 Introduction

In this paper we discuss a technique for reducing
the complexity of physically based simulations by
dynamically adding and removing objects on the
fly. We suggest that this method is ideal for use in
virtual reality (VR) where real time performance
and consistent behaviour is critical. To motivate
the research topic addressed in this paper we begin
by describing physically based modelling, why it
is of value in VR and what problems make it diffi-
cult to use in real time interactive applications.

2 Physically Based Model-
ling in Virtual Reality

Physically based modelling involves using physics
to model a particular phenomenon or object. Mo-
tion computation in animation is an area which has
benefited significantly from physically based ap-
proaches. Most animation systems use Newton’s
laws as the basis for algorithms to simulate a wide
number of things ranging from fire [10], water-
falls [10, 8], flocking animals [11], wind blown
leaves [12], powders [7] and even clay [1].

Many of these systems would be desirable to
simulate in virtual worlds particularly for gam-
ing and entertainment applications. An increasing
number of researchers and games companies are
developing physically based simulators [2, 13]. In
particular there is significant pressure in the games
industry to add more realism and provide users
with more exciting immersive experiences.

General purpose simulator engines all suffer
from a number of problems related to the meth-
ods used to solve the equations of motion. Often,
correct physically based simulation involves com-
putations which may depend on a wide range of at-
tributes and require sophisticated physical models.
The performance cost of these models can be too
high to enable their use in VR. Furthermore, the
methods used to solve for the motion of complex
systems are rarely totally robust and can spectacu-
larly fail to supply an appropriate meaningful solu-
tion. In VR this is a major problem because users
expect the model to behave in a particular way; if

it reacts to some event in an unpredictable fashion
then the model loses its plausibility. Consequently,
the application risks its integrity and acceptability
for wide-scale use as these types of problems are
perceived as ‘bugs’ rather than an unfortunate re-
sult of the solution method.

It is currently not possible to build a totally
robust general purpose simulator engine which
solves the equations of motion for any type of
physical system [9]. Thus if we wish to use phys-
ical simulation in VR the only realistic approach
is to sufficiently simplify the problem such that a
well implemented simulator would be able to con-
sistently return acceptable results. Before we can
outline possible methods for achieving this it is ap-
propriate to briefly describe our simulator.

We have implemented a general purpose frame-
work (collectively known as lota) for physically
based modelling in VR which consists of a pur-
pose built simulator engine, a freely available VR
kernel (GNU MAVERIK [6]), and a high level
scene description environment supported through
the Perl scripting language. The simulator com-
bines a particle system with an articulated rigid
body based approach. Models to simulate are con-
structed from particles (point masses), bodies (col-
lections of rigidly connected particles) and sys-
tems (domain of a simulation). Particles and bod-
ies may be interconnected through any combina-
tion of force functions and hinges. The equations
of motion for models are dynamically constructed
and solved using inverse and forward dynamics
techniques [4].

3 Managing Complexity

Now that an impression of the primitives used to
construct models to simulate has been given we
can describe how we advocate managing the com-
plexity of simulations. This is achieved by a com-
bination of two tightly bound techniques; simpli-
fying the model and reducing the problem domain
by structuring data appropriately.

3.1 Simplifying Models

A simulation may be simplified in two ways, firstly
through exploiting knowledge about the system
being simulated. In order to provide freedom for
customised simulations, the lota framework does
not enforce inflexible conventions or data repre-
sentations. All simulator primitives can be ex-
tended at the lota level and any type of force func-
tion can be implemented via a callback mecha-
nism. Simulator services can be called upon if re-
quired and can be used as little or as heavily as
desired.

The second method for simplifying a model is
by dynamic activation or deactivation or even ad-
dition and removal of simulator primitives on the
fly. This is achieved through functionality imple-
mented in the simulator engine and enables us to
adapt complexity as and when necessary [3]. A
consequence of this functionality if that the iner-
tia matrix for the system must be computed as re-
quired, although this does add a small performance
cost.

3.2 Reducing Problem Domains

The problem domain of a simulation is reduced
by careful internal structuring of data. We store a
scene graph as a hierarchically structured tree with
a system at the root, which specifies the domain of
an instance of a simulation. Every primitive in an
instance of a simulation is totally independent of
any other instances of system that may exist. Be-
neath this is a layer consisting of any number of
internal container objects called articulates. These
are not available to the user but are used internally
to store bodies related by hinges. This is very valu-
able because an articulate specifies the domain of
an inverse dynamics solution [5]. Beneath the ar-
ticulate layer is a body layer with individual parti-
cles as the leaves.

It is not possible to illustrate many of the ben-
efits of this structuring of data in a paper but this
approach provides a powerful means of managing
the complexity of the scene graph [3]. Further-
more routines exist in the simulator to manipulate

and analyse the scene graph. Now it is possible to
illustrate some of these concepts through a simple
‘ad-hoc’ example within a physical context.

4 Case Study: Simulating a
Newton’s Cradle

A Newton’s cradle is an interesting executive toy
composed of a set of metal balls suspended on
wires from a cradle like frame. Lifting a ball at
one end of the cradle, and releasing it results in a
collision between the moving and stationary set of
balls. Interestingly upon impact the moving ball
almost comes to an abrupt halt, and an impulse is
transmitted through the stationary set causing the
ball at the other end of the cradle to continue the
motion. Grouping together two balls, lifting them
and releasing in the manner described above, re-
sults in the impulse being transmitted through to
two balls at the other end of the cradle. This be-
haviour can be shown for any number of balls.
Furthermore if two sets of balls, one either side of
the cradle, are released at the same time the groups
appear to swap upon collision with the stationary
set.

Now that we know how a Newton’s cradle be-
haves, we can consider how to model it. Poten-
tially each ball suspended from the cradle could
be treated as a pendulum and the impact charac-
teristics of the metal balls modelled. The problem
with this approach is that in a VR application the
Newton’s cradle would simply provide subtle de-
tail in a broader context. Therefore it is critical
that the computational cost of such a simulation is
minimised.

Simplifying the model relies on prior knowl-
edge of how the system behaves so it has to be
achieved by the developer. In our model we ex-
ploit our observations of the toys behaviour. We
know from studying a Newton’s cradle that any
number of raised balls behaves like a single pen-
dulum, they collide with a stationary set and the
same number of balls continue the motion on the
other side. These two sets appear to have swapped
positions in the cradle. This is very important be-

cause it implies a model which will appear to be
correct regardless of the number of balls raised or
the combination in which they are raised. The im-
portant thing to realise is that although this type of
model gives an illusion of correct behaviour, it is
still sufficiently realistic to enable user participa-
tion. In the following section we outline how this
model is constructed.

4.1 Building the Model

Since all balls in a group move in unison only
one pendulum is required to simulate each group.
Splitting the group into two changes the situation,
now two pendulums are required to simulate the
motion. So it is safe to say that a linear relation-
ship exists between the number of groups and the
number of pendulums required to simulate them.
Figure 1 illustrates two possible groupings for the
Newton’s cradle together with the underlying pen-
dulums simulated. The first underlying pendulum
used to simulate the motion of a group consisting
of two balls is centred about the group at an offset
into the cradle of —150. A second group consist-
ing of four balls is represented by the underlying
pendulum offset at 50 units from the origin of the
cradle.

Underfying ﬁendulums

Figure 1. Newton’s cradle groupings

Since there is only one pendulum in the underly-
ing model of a group, only one simulator body has
to be stored together with its constituent six parti-
cles: one at the top hinge, one at the centre of the
ball and four around its circumference. An appro-
priate moment of inertia is maintained by placing
four particles around the circumference of a ball.

A cradle with n pendulums at rest is represented
by just one underlying pendulum; exactly how this
state changes is described in the following section.

4.2 Simulating the Model

After a simulation begins, the state of a cradle can
be altered by selecting and raising a number (x)
of balls. At this point a new group is dynamically
constructed consisting of z balls but with only one
underlying pendulum used to model its behaviour.
Until this new group collides with the stationary
group its motion is automatically handled by the
simulator. When a collision takes place, some ac-
tion is required.

In the event of a collision an offset is applied to
both groups involved and then they are swapped.
A subsequent collision may occur immediately
with the swapped group and its neighbour so it
is necessary to retest before rendering. The ef-
fect of this manipulation is that groups are literally
swapped and allowed to continue their motion.

Another issue which must also be addressed is
how to handle a collision with a group that is be-
ing dragged by a user. In this case the two groups
involved in the collision are dynamically consoli-
dated into one. Without consolidation, in the worst
case scenario each group could consist of just one
ball adding a significant performance overhead,
clearly the scenario we want to avoid. Thus dy-
namically consolidating groups has a performance
benefit.

Figure 2 in the Appendix shows an example
simulation in which a user selects, raises and re-
leases various combinations of balls. By conven-
tion the selected ball is coloured to convey this in-
formation to the user. In subfigure B the two right-
most balls are raised and later released in subfig-
ure G. Subsequently the three rightmost balls in
subfigure K are also raised and then released in
M. Note how both sets of balls are involved in a
collision with the stationary group containing two
balls in the centre. The number of balls in each
moving group swap upon collisions. From subfig-
ure T onwards the cradle is spun by the user. A
user interacting with the Newton’s cradle is shown

in Figure 3 (Appendix) within the broader con-
text of a VR model of the Advanced Interfaces
Group (AIG) laboratory at Manchester University.
Both simulations run at interactive frame rates on
a modest PC with a Pentium 366 processor.

5 Conclusions

In this paper we have outlined the lota system,
briefly described the techniques implemented to
manage complexity of simulations within this
framework, and illustrated the concepts through
the example of a Newton’s cradle simulation.

To conclude we would like to draw the read-
ers attention to a number of issues which bring
together the various sections of this paper. In
the Newton’s cradle example a minimal system
is simulated. This is used to illustrate complex-
ity management by simplifying the model. Cor-
rect physics is applied to pendulum(s) so a proper
physical simulation is carried out but minimised
through the use of an ‘ad-hoc’ model which de-
scribes the behaviour of the cradle. Pendulums are
dynamically added/removed from the simulation
as varying complexity is required in the model.

Furthermore each underlying pendulum is held
in one articulate for this particular example. The
benefits of this may be unclear, but the most valu-
able consequence is that each articulate’s motion
is computed independently so there is less likeli-
hood of the solver failing to return an acceptable
solution.

The performance of the Newton’s cradle exam-
ple is dependent on the degree of user participa-
tion. As the user selects, lifts and drops balls new
groups are being dynamically constructed, so the
number of pendulums required to simulate the sys-
tem may increase. This results in a higher level of
complexity in the simulation. Subsequent dynamic
consolidation of groups overcomes this problem.

Since the lota framework provides a mechanism
for dynamically managing the complexity of sim-
ulations the developer only has to specify appro-
priate logic for the application. The complexity
management routines then dynamically alter the

scene graph as required according to the specified
criteria. Essentially, the model evolves, self ad-
justs when required and continues to evolve over
the duration of a simulation. In the Newton’s cra-
dle example user interaction and consolidation of
groups are the criteria for dynamic alteration of the
scene graph.

The techniques decribed are applicable to any
particle or rigid body model which is specified in
terms of the primatives supported by lota’s sim-
ulator engine. Finally, further details of the im-
plementation of our complexity management tech-
niques are detailed in the first authors doctorate
thesis [3].

References

[1] M. Desbrun and M.P. Gascuel. Highly de-
formable material for animation and colli-
sion processing. In Proc. 5th Eurograph-
ics Workshop on Animation and Simulation,
Oslo, September 1994.

[2] Francois Faure. An energy-based method
for contact force computation. In Computer
Graphics Forum (Proceedings of Eurograph-
ics 96), volume 15, pages 357-366, August
1996.

[3] Mashhuda Glencross. A Framework for
Physically Based Modelling in Virtual Envi-
ronments. PhD thesis, Submitted to Univer-
sity of Manchester, November 1999. Pending
acceptance.

[4] Mashhuda Glencross and Alan Murta. Multi-
body simulation in virtual environments. In
Richard Zobel and Dietmar Moeller, editors,
Simulation — Past, Present and Future. 12th
European Simulation Multiconference, pages
590-594, Manchester, England, June 1998.

[5] Mashhuda Glencross and Alan Murta. A vir-
tual Jacob’s ladder. In Graphicon 99, pages
88-94, Moscow, August 1999.

[6] Roger Hubbold, Martin Keates, Simon Gib-
son, Alan Murta, Steve Pettifer, and Adrian
West. MAVERIK programmers guide. Tech-
nical Report MPG v4, University of Manch-
ester, October 1998. Draft.

[7] G. Miller and A. Pearce. Globular dynam-
ics: A connected particle system for animat-
ing viscous fluids. Computers and Graphics,
13(3):305-309, 1989.

[8] Alan Murta and James Miller. Modelling
and rendering liquids in motion. In Proceed-
ings of WSCG, pages 194-201, Plzen-Bory,
Czech Republic, February 1999.

[9] William H. Press, Saul A. Teukolsky,
William T. Vetterling, and Brian P. Flannery.
Numerical Recipes in C The Art of Scientific
Computing. Cambridge University Press,
Cambridge, second edition, 1992.

[10] W.T. Reeves. Particle systems — a technique
for modeling a class of fuzzy objects. Com-
puter Graphics, 17(3):359-376, July 1983.

[11] C.W. Reynolds. Flocks, herds and schools:
A distributed behavioral model. Computer
Graphics, 21(4):25-34, July 1987.

[12] Jakub Wejchert and David Haumann. Ani-
mation aerodynamics. Computer Graphics,
25(4):19-22, 1991.

[13] Benjamin Wooley. Rules of the game. Per-
sonal Computer World, pages 272-273, May
1999. htt p: / / ww. mat hengi ne. com

Acknowledgements

We would like to thank Dr. Simon Gibson for the
Advanced Interfaces Group laboratory program.

Contacting the Authors

The authors can be contacted at:

Department of Computer Science
University of Manchester

Oxford Road

Manchester M13 9PL

United Kingdom

+44 161-275 6176
Mashhuda Glencross: glencross@cs.man.ac.uk

Alan Murta; amurta@cs.man.ac.uk

A Appendix

A.1 Newton’s Cradle Images

D.
[y
E. F Q. H.
| J K. L.
R, Viigigi!
I, N 0, P,
53T 407 || FE Y| =S
> T.
L V. Wy, .

Figure 2: Interactive simulation of a Newton’s cradle

Figure 3: Interactive manipulation of a Newton’s cradle in the AIG laboratory

