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________________________________________________________________________ 
 
Collaborative virtual environments (CVEs) enable two or more people, separated in the real world, to share 
the same virtual ‘space’. They can be used for many purposes, from teleconferencing to training people to 
perform assembly tasks. Unfortunately, the effectiveness of CVEs is compromised by one major problem: the 
delay that exists in the networks linking users together. Whilst we have a good understanding, especially in 
the visual modality, of how users are affected by delayed feedback from their own actions, little research has 
systematically examined how users are affected by delayed feedback from other people, particularly in 
environments that support haptic (force) feedback. The current study addresses this issue by quantifying how 
increasing levels of latency affect visual and haptic feedback in a collaborative target acquisition task. Our 
results demonstrate that haptic feedback in particular is very sensitive to low levels of delay. Whilst latency 
affects visual feedback from 50 msec, it impacts on haptic task performance 25 ms earlier, and causes haptic 
measures of performance deterioration to rise far more steeply than visual. The ‘Impact-Perceive-Adapt’ 
model of user performance, which considers the interaction between performance measures, perception of 
latency and the breakdown of the perception of immediate causality, is proposed as an explanation for the 
observed pattern of performance.  
 
Categories and Subject Descriptors: H.5.2 [Information Interfaces and Presentation]: User Interfaces–Theory 
and methods; Haptic I/O. 
General Terms:  Human Factors, Measurement, Performance 
Additional Key Words and Phrases: Haptics, latency, virtual environments, distributed collaboration 
________________________________________________________________________ 
 
1. INTRODUCTION  

Collaborative Virtual Environments (CVEs) offer significant potential for geographically 
distant participants to work towards achieving a shared objective in a variety of diverse 
application areas including telesurgery, computer aided design and training. However, 
meaningful collaboration in virtual environments can be seriously limited by the 
characteristics of the network used for sharing data between different sites. If users are 
geographically remote from one another, then data travelling between them may be 
subject to considerable latency. 
 
Improvements to network design can reduce latency, but not sufficiently for many long 
distance Internet links. A fundamental  restriction on the speed of data transfer is imposed 
by the time it takes the electrical signal to propagate through an appropriate transfer 
medium. Add to this bandwidth constraints and processing time at either end, and the 
minimum theoretical latency we could expect for data travelling between the United 
Kingdom and the East coast of the United States, for example, is at best eighty, and more 
usually over a hundred milliseconds.  
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In this paper we present a detailed study of the effects of network communication 
induced latency in haptic and visual feedback from remote participants. The study 
considers the effects of between 25 and 400 msec of additional end-to-end latency (levels 
much lower than those considered in previous studies) on a task which relies on 
continuous haptic and visual exchange between participants to acquire a target. We 
analyze the effects quantitatively in terms of error rates, task completion times and users’ 
perceptions of the difficulty of the task. To our knowledge no similarly comprehensive 
study has been conducted; the most relevant literature, which includes research conducted 
in single user environments, is discussed below. An important result of our study is the 
‘Impact-Perceive-Adapt’ model of user behaviour, which describes how the perception of 
latency, and the breakdown in the perception of immediate causality, cause movement 
times to increase in direct proportion to latency, but error rates to rise in a non-linear 
fashion. 
 
1.1 Delayed feedback in single-user virtual environments 
Psychologists have long been investigating the effects of delaying sensory feedback using 
handwriting analyzers, oscilloscopes and master-slave robotic arms (Kalmus, Fry & 
Denes, 1960; Smith, McCrary & Smith, 1960; Kao, 1977; Sheridan & Ferrell, 1963; 
Ferrell, 1966). These studies tell us that a latency in visual feedback increases both the 
amount of time needed to complete a task and the number of errors made.  Analysis of 
handwriting, for instance, shows that when participants wrote on a telescriber (a 
precursor to the facsimile used to transmit handwriting over a network),  a delay between 
participants moving the pen and seeing the resulting marks caused letters not only to be 
formed more slowly, but also to vary more in shape (Kalmus, Fry & Denes, 1960; Smith, 
McCrary & Smith, 1960). We also learn that the relationship between the level of latency 
and the deterioration in performance appears to be linear: writing speed decreased 
proportionally with the amount of delay (Kalmus, Fry & Denes, 1960).  This was also the 
case in a positioning task conducted on a master-slave operator (a system in which the 
movements of a robotic arm at one site correspond directly to actions initiated through an 
input device at another site). The time to position an object increased as a function of the 
amount of latency in the system, as did the number of positioning errors (Sheridan & 
Ferrell, 1963). 
 
In a computer-based environment, Mackenzie & Ware (1993) conducted the first and 
arguably the most important quantitative research looking at the effects of visual latency, 
in a study where participants completed a Fitts’ Law target acquisition task using a 
desktop display and mouse. Participants had to move the mouse from a starting point to a 
target with a latency from moving the mouse to seeing the cursor move on the screen of 
between 25 msec and 225 msec. The study produced two particularly interesting results.  
Firstly, there was a linear relationship between the amount of latency and the time 
participants took to move to the target.  Secondly, the effects of delay depended upon 
task difficulty: the harder the task, the greater the detriment caused by latency. They 
incorporated their findings in a predictive model of performance, which factored the 
performance deterioration caused by an increase in latency into the Fitts’ law model that 
described how movement times increased according to the Index of Difficulty (ID). At 0 
latency, movement times (MT) are best predicted by model 1 (Fitts, 1964), where C1 and 
C2 are experimentally determined constants.  However, when latency is introduced, it 
interacts with ID and the two have a multiplicative effect on movement time, as shown in 
model 2. 
 

1. MT = C1 + C2ID 

2. MT = C1 + (C2 + C3 LATENCY)ID 
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This study is perhaps the best known analysis of the effects of visual latency, and has 
frequently been cited as the defining model of how latency affects performance in  
distributed virtual environments.  Other models of performance deterioration in the face 
of delayed visual feedback have been proposed by Ware & Balakrishnan (1994), who 
have extended Mackenzie & Ware’s (1993) model to account for 3D reaching 
movements, and Day, Holt & Russell (1999), who have explained the effects of much 
longer delays (between 2 and 6 seconds) in a remote driving experiment in terms of 
working memory disruption.  
 

As yet, there is no literature that offers a similar explanation of the effects of latency for 
the haptic domain. An early study by Ferrell (1966), showed that, as with visual 
feedback, delayed haptic feedback in a positioning task results in an increase in 
performance time and errors, but the intervals of delay (0.3, 1, 3 seconds) were not 
sufficiently small that we can learn about how the user might respond to subtle increases 
in latency. A study of latency in telesurgery (Ottensmeyer et al. 2000) demonstrated that 
surgeons are more sensitive to a latency in haptic feedback than visual when performing a 
laparoscopy task. However, the levels of latency examined (600 or 1200 msec) were 
again too large, and too few in number, to provide a model of performance. 
 
Previous work by the current authors monitored the effects of delayed haptic feedback in 
a more systematic manner, using a Fitts’ target acquisition task (Jay & Hubbold 2004), 
but failed to find an effect of latency on haptic performance. This occurred because the 
feedback in the study (a ‘buzzing’ over the target) was discrete, rather than continuous 
(like visual feedback), making it almost superfluous, as users could rely solely on the 
visual feedback. Whenever the visual and haptic feedback were out of synch, and hence 
conflicted,  users ignored the haptic feedback, which occurred only briefly, choosing to 
rely instead on the continuous visual feedback. A second study used a tapping task where 
haptic feedback was crucial: participants relied on it to ensure they did not penetrate the 
surface of the targets (Jay & Hubbold 2005). However, latency still had far less effect in 
the haptic channel than in the visual. Whilst a delay of 69 msec disrupted visual feedback 
sufficiently to significantly increase movement times, a delay in haptic feedback did not 
affect performance until it reached 187 msec. To profile the effects of latency in the 
haptic channel, it is therefore important to ensure it is a) continuous, and  b) essential to 
the task, factors that were both taken into account when designing the current experiment. 
 
1.2 Delayed feedback in CVEs 
There have been many studies observing visual and haptic collaboration in CVEs (e.g. 
Noma & Miyasato, 1997; Park & Kenyon, 1999; Basdogan et al. 2000; Sallnas et al. 
2000; Hubbold 2002, Hikichi et al. 2002, Kim et al. 2004; Sallnas & Zhai, 2003, Gunn et 
al., 2005). However, none of these has systematically assessed in detail the effects of 
latency on task performance. The experiments that have addressed this issue are reported 
below. In most cases, they provide only qualitative results, or consider only a few levels 
of latency. In no cases are there quantitative measures stringent enough to provide a 
robust understanding of the effects of end-to-end latency in the visual or haptic channels.  
 
A study of a virtual ball game in which players had to ‘hit’ the ball into the opposing 
player’s goal resulted in some interesting observations of the effects of delayed visual 
feedback: the game was playable with a delay of 150 msec, but became progressively 
harder after this, becoming almost impossible after 500 msec (Vaghi, Greenhalgh & 
Benson, 1999). The players’ dialogue revealed the discrepancies caused by the latency 
(the divergent views of the world led to arguments about the location of the ball, for 
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example), but the quantitative measure, the number of goals scored, was inadequate, as 
players scored so few even with the baseline level of zero delay. 
 
A study by Allison et al. (2004) examining delayed haptic feedback showed that end-to-
end latency caused significantly longer completion times and higher error rates in a co-
operative positioning task. However, the study considered only 2 levels of additional 
latency (100 or 200 msec). Alhalabi et al. (2003) asked users to ‘shake hands’ in several 
predefined locations in a CVE, under varying levels of latency. In this case, the 
quantitative measure, completion time, was not affected until latency reached 400 msec, 
indicating that the task was not particularly sensitive to delay, and the application of the 
results was limited. 
 
1.3 A collaborative target acquisition task with increasing latency 
The current study was designed to systematically quantify how CVE users respond when 
data specifying their collaborator’s actions are delayed. The principal goals were to 
understand how performance deteriorated as a function of latency and to quantify users’ 
perceptions of task difficulty and disruption under increasing amounts of latency. The 
objective was to produce models of these data, providing a method of predetermining the 
effects of latency in CVEs, information that can be used for understanding the limitations 
of CVEs and managing the effects of latency. 
 
An important aspect of the study was to gain a greater understanding of latency in the 
haptic channel, as very little is currently known about this. Virtual Interpersonal Touch is 
used infrequently in CVEs, but its effectiveness at conveying emotion means it is 
becoming increasingly popular, particularly in games (Bailenson  et al., 2006; Bailenson 
& Yee, 2007).  
 
The task was designed so that haptic feedback was essential. To understand the effects of 
latency on visual and haptic feedback individually, each modality must provide different, 
but equally important, types of information. To achieve this, the current study used a 
‘collaborative target acquisition’ task. Users sat opposite each other in a very simple 
environment (see Figures 1 and 2). They had to reach forward (i.e., extend or move back 
a haptic device in order to achieve a change in the Z dimension) to touch the other 
person, and then move to a target together without losing contact. Their vision told them 
the location of their collaborator and the target in the XY plane. The environment had 
very poor visual depth cues: a wire box indicated the boundaries of the environment (see 
Figure 2), and perspective projection caused objects to become slightly bigger or smaller 
as they moved towards and away from the user. As such, users had to rely continuously 
on haptic feedback to know they were in contact with their collaborator. This set-up 
allowed us to differentiate between the aspects of performance that were affected by 
latency in the visual channel, and those that were affected by latency in the haptic 
channel. Visual latency was the primary influence on movement times and aiming errors 
(where the user ‘fell off’ his or her collaborator), as users relied on visual feedback to 
know the position of the objects in the XY plane. On the other hand, penetration and 
separation errors (where the user passed through or failed to remain touching the surface 
of his or her collaborator respectively), were likely to be due almost entirely to latency in 
the haptic channel, as users relied on haptic feedback to know they were in contact.  
 
Performance data were recorded during both the initiation period (when participants first 
made contact) and the movement period (when participants were moving towards the 
target), allowing us to compare the effects of latency on two different types of movement. 
To monitor users’ conscious perceptions of the effects of latency, they were asked how 
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difficult they considered the task as a whole, and also to determine separately the level to 
which visual and haptic feedback felt disrupted. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 1: Moving collaboratively from the start circle in the center to the active 
target. Participants are facing each other in the virtual environment: the first screen 

shows the view of one participant; the second screen shows the view of the other. In each 
case the local user is represented by the small sphere and the remote user by the larger 

black circle. Alternative target positions are in each of the corners. 
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Figure 2: The equipment used for the experiment. Movements in the XY plane correspond 
directly to the left-right or up-down movements of the user’s hand. Movements in the Z 

direction are achieved by moving the arm backwards and forwards. 

2. METHOD 

2.1 Apparatus 
The virtual environment was rendered using the Maverik++ SDK (Glencross et al. 2005) 
on a 2GHz PC with 512 MB RAM at one peer, and on a 3.2GHz PC with 1GB RAM at 
the other. Force feedback was provided by two FCS HapticMASTERs, which rendered 
geometry and forces at a rate of 2.5KHz. A HITACHI CP-X320 and a Sharp NoteVision 
5 LCD projector displayed the environment on two 180cm x 250cm screens. The PCs and 
the haptic servers were set up on a dedicated LAN using a net-lynx mini-switch. Both 
PCs were running Linux and the netem kernel module (http://linux-
net.osdl.org/index.php/Netem) was used to introduce the end-to-end latency. The mean 
frame rate of 72fps meant data was sent by one peer and received by the other on average 
every 14 msec. 
 

2.2 Participants 
Thirty participants (4 female and 26 male) between the ages of 20 and 30 took part in the 
study in pairs. Participants had not completed the task before and were naïve as to the 
aims of the experiment. This criterion was used for selecting participants as a primary 
aim of the study was to understand how people respond to latency when they are not 
expecting it. For the same reason, a confederate was not considered appropriate, and 
participants completed the experiment in pairs assigned at random. Each person was paid 
£10 for completing the experiment. 
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2.3 Virtual Environment 
The very simple environment used for the task is shown in Figures 1 and 2. Using the 
HapticMASTER, participants each controlled an object. The object corresponding to the 
local end effector (the virtual representation of the user’s movements) appeared as an 
orange sphere, which is the default representation of the end effector when using the 
HapticMASTER API. The remote end effector was represented by a larger black circle – 
the colour contrasted with the orange sphere, and the size made it difficult, though not 
impossible, to maintain contact. The participants were asked to assume they were facing 
each other in the virtual world. They were able to ‘touch’ each other by positioning the 
end effector over the black circle and moving forwards until they could feel its surface, 
which was rendered haptically to feel like a solid, slightly pliant circular plane 5cm in 
diameter. Collisions between the plane and the end effector were detected by the haptic 
server, and rendered using admittance control2. The discrepancy between the sizes of the 
local and remote object representations was necessary because the HapticMASTER, like 
most haptic devices, only supports point contact: if the remote object were actual size, it 
would be impossible for the users to remain touching. Pilot studies indicated that the 5cm 
diameter was appropriate, as it was possible for the users to maintain contact, but it was 
still difficult enough to require considerable concentration. Active collaboration between 
the two users was ensured by minimizing friction between the sphere and circle: both 
users had to participate equally to maintain contact, as they were not able to drag, or be 
dragged, by the other user. The lack of depth cues meant that users had to rely on the 
haptic feedback to know that they were touching their collaborator. 
 
In an effort to limit external distractions, the environment was projected onto a screen in 
front of the participant, such that the visual rendering of the target and remote object was 
8 times larger than the haptic rendering. 
 
2.4 Network Topology 
The experiment utilized a peer-to-peer design (see Figure 3), where the environment was 
simulated fully at each site, and locally initiated updates regarding the position and force 
on the end effector were applied immediately, at a rate of 2.5kHz in the haptic simulation, 
and every 14 msec (the frame rate of 7 msec + the mean projector refresh rate of 7 msec) 
on average in the visual simulation. These data were sampled every time around the 
graphical rendering loop and transmitted to the other environment, where the remote 
object was moved to the specified position and the force was applied on the end effector 
(if the objects were touching) as soon as an update was received. The remote object’s 
position and force data in subsequent frames were rendered according to the last received 
update. This was crucial as in most cases updates were sent at a much slower rate than 
that at which either the graphics or particularly the haptics were rendered. If the update 
was applied only in the frame it arrived, there would be gaps in the rendering of the 
remote object, making the environment very unstable. 
 
As there was no additional latency applied to local updates, any performance 
deterioration could be attributed entirely to the delay in updates from the other user. 10 
levels of latency were assessed in the experiment: 0 msec; 25 msec; 50 msec; 75 msec; 
100 msec; 150 msec; 200 msec; 250 msec; 300 msec; 400 msec. There was a focus on 
low levels of latency in particular, as these will persist in even the fastest wide area 
networks. 

                                                           
2 A full description of the HapticMASTER’s collision detection algorithm can be found 
at http://www.fcs-cs.com/robotics/technology/#impvsadm  
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Figure 3:The network topology 
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2.5 Procedure 
Each participant sat 3m from the projection screen used to display the environment with 
the HapticMASTER in front of him or her. Although both participants were in the same 
room (the projection screens were side by side), a barrier down the center of the room 
prevented them from seeing the other person or display. Participants were asked not 
speak to each other during the experiment. 
 
After they had read the information sheet, the participants were shown how to use the 
HapticMASTER and perform the task. The session began when participants positioned 
their end effectors in the green start circle in the center of the environment and initiated 
contact with each other. After two seconds, a red target circle appeared at the back of the 
environment in the corner 21cm from the start (in the haptic modality). The participants 
were asked to move towards it as quickly as possible, whilst ensuring that they 
maintained contact with each other. If they lost contact at any point, they were asked to 
re-establish it before continuing with the task. When they were over the target in the XY 
plane it disappeared, signifying the end of the trial. At this point, the collaborators broke 
contact and returned to the green start circle in their own time. They were then asked to 
repeat the process for the remaining eleven trials: initiating contact, waiting for the target 
to appear and then moving towards it together. The target remained the same distance 
from the start and the same size throughout the experiment, but the corner in which it 
appeared varied at random. Figure 4 shows two participants moving from the start to the 
target. 
 
Participants completed one practice session of 12 trials with no added end-to-end latency, 
followed by 12 experimental sessions – one for each level of latency, ordered at random. 
To minimize practice effects, participants then performed the experimental sessions again 
in the reverse order. During the experiment, the lights were lowered to ensure the 
participants could see the display properly. 
 
2.6 Performance measures 
Movement times – the interval between the target appearing and the participants reaching 
it – were logged for every trial. The positions of the local and remote objects were stored 
in a buffer in every frame during both the initiation period (from the moment the 
participants established contact over the start until the target appeared two seconds later) 
and the movement period (the moment from the target appeared until the participants 
acquired it). The data were written to a file at the end of each trial, during the period 
when participants were returning to the start. The initiation and trial data were classed 
differently as users were required to make a different type of movement in each period, 
and there is a possibility that latency may affect each type of movement differently. In the 
initiation period, the users reached towards each other along the Z axis and stopped when 
contact occurred. In the movement period, the users had to maintain contact with each 
other in the Z direction, but in addition had to move in the XY plane towards the target.  
 
Error rates were calculated by comparing the position data of the end effectors. To avoid 
an error, the local end effector had to be within 2.5cm of the remote end effector in the 
XY plane, and within 2.5mm of the remote end effector along the Z axis. At any point in 
time, the positions of the objects will be slightly different in each environment. All the 
data was thus recorded in both peers, and mean values of each measure were used for 
statistical analysis.



 10 

 

Figure 4: Performing a trial. The barrier between the screens has been removed 
for clarity. 
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Errors were classified in three ways, as shown in Figure 5. An aiming error occurred 
when participants failed to position their objects correctly in the XY plane, so the end 
effector was to the side of the remote object, rather than directly over it. As participants 
used vision to do this, a rise in aiming errors could reasonably be attributed to an 
increased disruption of visual feedback. If participants aimed correctly, they may still 
have made a penetration or separation error. A penetration error occurred when the 
participants moved towards each other too quickly, causing the remote object to be 
rendered around, or on the wrong side of the local end effector (the objects ‘passed 
through’ each other during the period between updates). To the participant, this gave the 
effect of penetrating the remote object. In a separation error, the participant failed to stay 
in touch with the surface of the remote object. As participants relied on touch to tell them 
if they have made contact, a rise in penetration and separation errors were attributed to an 
increased disruption of haptic feedback. 
 
As latency may increase the time to reach the target, it would be inappropriate to measure 
the increase in errors per trial – the longer a participant spends in a particular condition, 
the greater the opportunity for making mistakes. Instead, the following measures were 
used for the error data: percentage of time spent in each type of error; mean duration of 
an error (the time between losing and regaining contact); frequency (number of errors per 
second); and magnitude (the distance by which the two objects became separated). 
 

2.7 Questionnaire 
After each session, participants were asked to rate on a scale of 1 to 10 how difficult they 
found the task, how disrupted they found the visual feedback and how disrupted they 
found the haptic feedback. They were asked to do this with regard to both initiating 
contact (at the start of a trial) and maintaining contact (when moving towards the target). 
The practice session, which did not contain any additional latency, acted as a baseline for 
their ratings, and thus had a score of 1. A score of 10 was appropriate if the user 
considered the task completely impossible. 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: The three categories of error. The remote user’s current position is shown in 
black and the  previous position is shown in grey. The arrows indicate the remote user’s 

direction of movement. 
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2.8 Hypothesis 
The experiment recorded movement times, error rates and users’ perceptions of task 
difficulty and feedback disruption over 10 levels of latency. These measures allowed us 
to assess whether latency had different effects on visual and haptic feedback, whether its 
consequences varied according to the type of movement (initiating or maintaining 
contact), and whether it affected users’ perceptions of latency in the same manner as their 
physical responses. Previous target acquisition studies have shown that delaying feedback 
from a user’s own actions causes performance to deteriorate in a linear fashion: delaying 
feedback from another user’s actions may well have a similar effect. The hypothesis was 
thus that all measures of performance, whether they applied to haptic or visual feedback, 
initiating or maintaining contact, actual task performance or users’ questionnaire ratings, 
would increase in direct proportion to the amount of latency. 
 
3. RESULTS 

3.1 Qualitative Observations of User Performance 
Latency had a negative effect on both visual and haptic feedback. The manner in which 
latency affected participants’ movements is shown in Figures 6 and 7. Figure 6 shows a 
pair of participants moving in the XY plane to a target in the top right under each level of 
latency. Up to the 100 msec level, the participants had no trouble moving together in a 
straight line towards the target. After this point, the increase in the gap between updates 
made it more difficult to remain synchronized. It is interesting to observe, however, that 
latency does not appear to have a linear effect on aiming performance. Whilst movement 
at 400 msec of latency is clearly more disrupted than movement at 0 msec, performance 
is not obviously worse than at 150 msec of latency. 
 
Figure 7 shows the same pair of participants moving in the Z direction. Latency had a 
much more serious effect on haptic feedback, and to show this in detail, the graphs show 
only the first 100 frames of the movement period. When there is no delay, participants 
are able to maintain close contact with each other, but by 50 msec, separation errors have 
become a problem. At 100 msec, penetration errors are also occurring regularly. 
Behaviour is far more disrupted by the latency in haptic feedback, and movements are far 
less predictable. It is possible to see the growing gap between updates and observe how 
users respond to it. However, it is difficult to tell through observation alone the extent to 
which different levels of latency impair haptic interaction.
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Figure 6: End effector movements in the XY plane from the start to a target in 
the top right becoming increasing unstable due to  delayed visual feedback. 
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Figure 7: End effector movements in the Z direction over the first 100 frames of 
a trial becoming increasingly unstable due to delayed haptic feedback 
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3.2 Quantitative Measures of User Performance 
The dependent variable, additional end-to-end latency, had ten levels ranging from 0 to 
400 msec as described in Section 2.4, and applied to data travelling from both sites. If we 
term the standard latency between sites t, and the additional end-to-end latency x, site 1 
received updates t + x msec after they had occurred at site 2, and site 2 received updates t 
+ x msec after they had occurred at site 1. As participants completed the experiment in 
pairs, and each person’s performance was dependent on his or her partner’s, the pair was 
used as the sampling unit, and all the performance measures reported below are the mean 
of the values obtained by each member of the pair.  
 
In every measure of performance, latency produced a detrimental effect – slowing 
movement down, increasing errors and causing higher ratings of difficulty and disruption. 
However, contrary to the hypothesis, the measures did not necessarily increase in direct 
proportion to latency, nor were they affected by latency in a uniform manner. While the 
increase in movement times and questionnaire ratings corresponded closely to the level of 
latency, error rates had a non-linear relationship with delay, which varied according to 
modality and movement type. 
 
The results are divided into three sections, each considering a particular type of data in 
detail. The first section looks at movement times, the principle measure of users’ 
responses to visual delay. The second section deals with the error data, considering the 
percentage, frequency, duration and magnitude of separation and penetration errors 
(which vary according to haptic delay) and aiming errors (which vary according to visual 
delay) during both the initiation and movement periods. The third section examines the 
questionnaire data, which indicate how delay affects users’ perceptions of task difficulty 
and feedback disruption. 
 
Graphs showing how each measure changes with latency are provided in each section, 
along with the results of ANOVAs used to determine the levels at which latency 
significantly altered performance. The data were also fitted with linear, quadratic and 
cubic regression models. The results of all the regression analysis can be found in 
Appendix A, but if a model provided a particularly good fit (R2 > 0.9), it is discussed 
alongside the rest of the results in this section. 

The following subsections consider all of the quantitative measures, and contain 
numerous detailed observations, which have been included to provide a complete picture 
of the effects of latency in this situation. The concluding section provides a more concise 
summary of the data, and outlines the most important results and their implications. 
 
3.2.1 Movement Times 
The mean target acquisition time under each condition is shown in Figure 8. A repeated 
measures ANOVA shows a significant main effect of latency on movement time (F9,126 = 
48.752, p<0.001), revealed by pairwise comparisons to start at 50 msec.  
 
Regression models3 for the movement time data are shown in Table 1. Although simple 
linear regression explains 98% of the variance, a slightly better fit is provided by a 
quadratic model. However, the advantage is only small. 
 
 

                                                           
3 For brevity we refer to Latency as LAG in the models. 
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Figure 8: The mean time in msec to move from the start to the target. 

 
Model R2 
MT = 3616.33 + 24.1657LAG 0.98 
MT = 3224.72 + 31.7348LAG – 0.0199 LAG2 0.99 

Table 1: Regression models for the movement time data (MT). 

3.2.2 Errors 
The positions of the local and remote objects in every frame were recorded for each trial 
from the moment that the participants first touched over the start, to the moment that they 
reached the target. If the two objects lost contact at any point during this period, it was 
regarded as an error. The first section below considers the errors that occurred in the 
initiation period – the two seconds between the participants first making contact and the 
target appearing. The following section then discusses the error data for the movement 
period – the time between the target appearing and the participants acquiring it. The same 
scales are used for the graphs in both sections, to illustrate the differences between the 
two periods. 
 
Initiation Period 
The first thing to note is that virtually no aiming errors are made during the initiation 
period, regardless of the level of latency. This is unsurprising, as there is very little 
movement in the XY plane during this period – participants are asked simply to make 
contact and remain over the start circle. Aiming errors are therefore not considered 
further in this section. 
 
Figure 9 shows the percentage of errors in the initiation period as a function of latency. 
There is a slight rise in the percentage of penetration errors (F9,126 = 3.80, p<0.001); 
however, pairwise comparisons show this is not significant until 200 msec. By contrast, 
the percentage of separation errors rises steeply from 25 msec, peaks at 100 msec and 
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then slowly tapers off, until it is significantly smaller again at 400 msec (F9,126 = 7.25, 
p<0.001). Separation errors are far more common than penetration errors, and exert the 
greatest influence on the overall error pattern. A cubic regression model provides the best 
fit for the overall percentage error and the penetration percentage error (see Table 2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 9: Percentage of initiation period spent in error. 

 
Model R2 
O_PER = 10.8412 + 0.2056LAG - 0.001LAG2 + 0.0000014LAG3 0.90   
P_PER = 1.2591 + 0.0279LAG - 0.0001LAG2 + 0.00000015LAG3 0.92   

Table 2: Regression results for the percentage of time spent in error during the initiation 
period. O_PER = overall; P_PER = penetration. 

 
The pattern of error frequency is also different for separation and penetration errors (see 
Figure 10). Whilst separation errors peak at 75 msec and then start to fall (F9,126 = 5.20, 
p<0.001), penetration errors rise at a slower rate, but continue to increase in frequency as 
latency increases (F9,126 = 11.48, p<0.001). Table 3 shows the regression results for the 
overall frequency of errors and the frequency of penetration errors during the initiation 
period. In both cases, cubic models offer a good fit, but these models fail to capture the 
peak at 75 msec, and subsequent drop at 100 msec, indicating that they are not a 
completely reliable explanation for the data. 
 
There is no main effect of latency on the duration of errors during the initiation period 
(see Figure 11), although there is a main effect of type: penetration errors have a mean 
duration of 57 msec; and separation errors are on average more than twice as long at 128 
msec (F2,28 = 7.92, p<0.001).  The magnitude of errors (see Figure 12) is not affected by 
latency either, but again, penetration and separation errors are significantly greater than 
aiming errors (F2,28 = 6.59, p<0.005). 
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Figure 10: Mean error frequency/second during the initiation period 

 
 

Model R2 
O_FREQ = 1.0289 + 0.0157LAG – 0.00007LAG2 + 0.000000083LAG3 0.93   
P_FREQ = 0.2513 - 0.0038LAG – 0.000006LAG2 0.93   
P_FREQ = 0.1990 + 0.0059LAG – 0.00002LAG2 + 0.000000023LAG3 0.96   

Table 3: Regression results for error frequency/sec during the initiation period. O_FREQ 
= overall, P_FREQ = penetration. 

 

 

 

 

 

 

 

 

 

 

Figure 11: Mean error duration during the initiation period. 

0
100
200
300
400
500
600
700
800
900

1000

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

latency (msec)

m
ea

n 
er

ro
r d

ur
at

io
n 

(m
se

c)

mean
aiming
penetration
separation

0

0.5

1

1.5

2

2.5

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

latency (msec)

fre
qu

en
cy

 p
er

 s
ec

on
d

overall
aiming
penetration
separation



 19 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Movement Period 
Figure 13 displays the mean percentage of time spent in each type of error during the 
movement period. There is a main effect of latency on the overall percentage error (F9,126 
=14.864, p<0.001), which starts at 25 msec. However, there is also a main effect of type 
(F2,28 = 11.532, p<0.005), and an interaction between latency and type (F18,252 = 2.872, 
p<0.001), indicating that, again, the effects of latency are not uniform for each type of 
error. 
 
Pairwise comparisons show that the significant increase in the error percentage occurs 
from 25 msec only for separation errors (F9,126 = 7.979, p<0.001). The percentage does 
not increase significantly until 100 msec for aiming errors (F9,126 = 4.768, p<0.001) and 
penetration errors (F9,126 = 3.373, p<0.001). Regression does not adequately explain the 
effects of latency on any individual error type, but it does provide a strong cubic model 
fitting the overall percentage of error during the trial period (see Table 4).

Figure 12: Mean error magnitude during the initiation period 
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Figure 13: Percentage of movement period spent in error 

 
 

Model  R2 
O_PER = 19.0438 + 0.2854LAG - 0.0012LAG2 + 0.00000163 0.99   

Table 4: Regression results for the percentage of time spent in error during the movement 
period. O_PER = overall. 

 
Figure 14 shows the error frequency results from the movement period. If errors are 
considered as a whole, there is a main effect of latency on error frequency, starting at 25 
msec (F9,126 = 7.503, p<0.001). However, at 100 msec, in contrast to the percentage of 
errors, the number of errors per second starts to decline. At 400 msec of additional 
latency the frequency is not significantly different to that at 0 msec. As before, there is a 
main effect of type (F2,28 = 12.924, p<0.001), and an interaction between latency and type 
(F18,252 = 5.646, p<0.001). 
 
Separation errors are again the most common, and thus have the greatest influence on the 
overall pattern. The main effect of latency starts at 25 msec, peaks at 75 msec and then 
starts to fall again, until at 400 msec the frequency of separation errors is no greater than 
it is at 0 msec (F9,126 = 6.837, p<0.001). Penetration errors follow a similar pattern (F9,126 
= 4.645, p<0.05), although the slope is shallower and the main effect is not significant 
until 50 msec. Aiming errors, on the other hand, increase in frequency steadily as latency 
increases, leveling off at 150 msec (F9,126 = 2.301, p<0.05). This relatively shallow slope 
is the only one to be adequately explained by a regression model (see Table 5). 
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Figure 14: Mean  error frequency/second during the movement period 

 
Model R2 
A_FREQ = 0.0899 + 0.0004LAG – 0.0000008LAG2 0.90   
A_FREQ = 0.0827 + 0.0007LAG – 0.000003LAG2 + 0.0000000032LAG3 0.96   

Table 5: Regression results for error frequency/sec during the movement period. 
A_FREQ =aiming. 

 
Figure 15 shows the mean duration of movement period errors as a function of delay. In 
contrast to the initiation period, there is a main effect of latency on duration (F9,126 = 
14.665, p<0.001) as well as a main effect of type (F2,28 = 41.53, p<0.001). Pairwise 
comparisons show that separation errors start to increase significantly at 25 msec (F9,126 = 
17.641, p<0.001). Despite the fact that they are by far the most common, aiming errors do 
not increase significantly in duration until 150 msec (F9,126 = 3.743, p<0.001), like 
penetration errors, which are the least common (F9,126 = 14.626, p<0.001). Table 6 
displays the results of the error duration regression. Separation error duration is explained 
by a linear model, whilst for the overall mean and penetration error duration, the 
quadratic and cubic models have a slight advantage. However, the difference between 
these and the linear models is only small. 
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Model R2 
M_DUR = 303.459 + 0.7558LAG 0.94  
M_DUR = 283.843 + 1.135LAG - 0.001LAG2 0.96  
P_DUR = 96.2488 + 0.6457LAG 0.94  
P_DUR = 89.6966 + 0.7723LAG - 0.0003LAG2 0.94  
P_DUR = 92.4978 + 0.6616LAG - 0.0004LAG2 – 0.000001LAG3 0.95  
S_DUR = 198.993 + 0.6949LAG 0.96  

Table 6: Regression results for error duration during the movement period. M_DUR = 
mean; P_DUR = penetration; S_DUR = separation. 

 
Figure 16 shows the mean magnitude of each type of error. There is a significant main 
effect of latency (F9,126 = 13.367, p<0.001) starting at 50 msec, a significant main effect 
of type (F2,28 = 19.233, p<0.001) and an interaction between latency and type (F18,252 = 
3.973, p<0.001). Although penetration errors are affected by latency from 50 msec (F9,126 
= 12.649, p<0.001) and separation errors increase significantly when latency is only 25 
msec (F9,126 = 17.09, p<0.001), delay does not have a significant effect on the magnitude 
of aiming errors. Table 7 shows regression models for the overall mean, penetration and 
separation error magnitude. A linear model predicts how separation error magnitude rises 
with latency. A quadratic model provides the best fit for the overall mean error 
magnitude, whilst a cubic model provides the best fit for penetration error data, but only 
by a small margin. 
 
 
 
 

Figure 15: Mean error duration during the movement period 
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Figure 16: Mean error magnitudes during the movement period 

 
Model R2 
M_MAG = 0.2974 + 0.0019LAG - 0.000002LAG2 0.93  
P_MAG = 0.171 + 0.0035LAG - 0.000004LAG2 0.92  
P_MAG = 0.134 + 0.0049LAG - 0.000001LAG2 - 0.000000016LAG3 0.93  
S_MAG = 0.1179 + 0.001LAG 0.99  

Table 7: Regression results for error magnitude during the movement period. M_MAG = 
mean; P_MAG = penetration; S_MAG = separation. 

 

3.2.3 Questionnaire data 
Figures 17 and 18 show the participants’ mean questionnaire ratings. Again, the value 
entered into the analysis was the mean of the pair’s ratings. There is a main effect of 
latency, starting at 50 msec (F9,126 = 2.23, p<0.001). However, there is no effect of 
question type: ratings for difficulty and the disruption of visual and haptic feedback in 
both the initiation and trial phases all rise at the same rate as latency increases. 
 
Regression models for the questionnaire data are shown in Table 8. Cubic or quadratic 
models provide the best fit, but in most cases the advantage they have over a linear model 
is very small. 
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Figure 17: Mean difficulty and disruption ratings for initiating contact 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: Mean difficulty and disruption ratings for maintaining contact. 
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Model R2 
ID = 1.8575 + 0.0081LAG      .98    
ID = 0.7046 + 0.0111LAG - 0.000008LAG2 .99    
IV = 1.9238 + 0.0073LAG .97    
IV = 1.7889 + 0.0099LAG - 0.000007LAG2 .98    
IH = 1.9779 + 0.0074LAG .96    
IH = 1.7522 + 0.0118LAG - 0.00001LAG2 .99    
MD = 1.9598 + 0.0084LAG .98    
MD = 1.7930 + 0.0116LAG - 0.000008LAG2 .99    
MV = 2.0006 + 0.0079LAG .98    
MV = 1.8459 + 0.0109LAG – 0.000008LAG2 .99    
MH = 2.1692 + 0.0073LAG .94    
MH = 1.9469 + 0.0116LAG – 0.00001LAG2 .97    
MH = 1.7633 + 0.0189LAG – 0.00006LAG2 + 0.000000081LAG3 .99    

Table 8: Regression results for difficulty and disruption ratings. I = initiating contact; M 
= maintaining contact; D = overall difficulty; V = visual disruption; H = haptic 

disruption. 

 

3.3 Summary 
The data showed that the relationship between latency and the visual and haptic 
performance measures was complex and multifaceted. Whilst movement times and 
questionnaire ratings increased from 50 msec of latency, and in direct proportion to 
delay, error rates increased from 25 msec of latency, tended to be non-linear, and varied 
according to both modality and the type of movement that the user performed. For 
example, aiming errors did not occur during the initiation period, when users simply 
remained stationary over the start, but did occur during the movement period, and 
increased significantly with latency. In contrast, haptic errors occurred during both the 
types of movement, and were far more common than visual errors. The main effects of 
type showed that some errors occurred more frequently than others. The percentage of 
separation errors was by far the highest, indicating that in this task maintaining contact 
with the surface of an object in the Z direction is a particular problem. There were also 
interactions between the different error types, indicating that latency did not affect each 
aspect of performance in exactly the same way.  
 
Despite these variations in the precise effects of latency, it is possible to see some broad 
trends in the data. The key results can be summarized as follows: 
 

• Questionnaire ratings rose in direct proportion to latency from 50 msec, 
indicating that users accurately perceived the increase in latency. 

• Movement times also increased from 50 msec, closely fitting a linear model. 
• In contrast, the error percentage rose steeply from 25 msec, but stagnated after 

100 msec.  
 
So, the question is, why did movement times and ratings of feedback disruption and task 
difficulty increase with latency as hypothesized, but error rates follow a non-linear 
pattern? The next section attempts to answer this question, proposing the Impact-
Perceive-Adapt model of performance as an explanation for the pattern of user behaviour 
observed here. 
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4. THE ‘IMPACT-PERCEIVE-ADAPT’ MODEL OF PERFORMANCE 

Whilst movement times and questionnaire ratings increase in direct proportion to latency, 
error rates do not: the ability to touch and maintain contact deteriorates rapidly as latency 
rises to start with, but declines far more slowly with latencies over 100 msec.  
 
The relatively static error rates that eventually occur can be attributed to a speed/accuracy 
trade-off, first documented in target acquisition tasks by Fitts (1954). As the Index of 
Difficulty of the task increases, people slow their movements down to avoid an increase 
in errors. Here we manipulate latency, rather than the width and distance of the target, but 
the effect is the same: as latency increases, people slow their movements to avoid 
increasing the error rate.  
 
This phenomenon provides a good explanation for the stagnation of error rates, but it 
does not explain why they rise so rapidly to start with. To understand this, it is pertinent 
to consider how people perceive latency, and the effect it has on their performance. If we 
consider the questionnaire ratings, we can see that users do not rate the task as more 
difficult, or feedback as more disrupted, until latency reaches 50 msec. If people do not 
perceive any difficulties caused by latency, they are presumably unaware that it is 
affecting their performance, and do not change their behaviour. 
 
Users become aware of latency at 50 msec, and move more slowly, although they do not 
slow down enough to halt the rise in errors at this point. Figure 8 shows that the increase 
in movement times has a relatively shallow gradient for levels of latency below 100 
msec. Observation of the error percentage (Figures 8 and 12) shows that it is also below 
100 msec that the increase in error rates is at its greatest. 
 
So, although users are aware of latency affecting their performance, when it is less than 
100 msec they fail to slow their movements down enough to stop an increase in errors. 
Why is this? A possible explanation is that although people are aware of the latency, it 
remains relatively undisruptive, as the gap between updates is not sufficient to cause the 
breakdown of the perception of immediate causality (Card, 1983). At low levels of 
latency (up to 100 msec), when their collaborator’s movements still appear smooth, users 
alter their behaviour little, and haptic error rates rise rapidly. As soon as feedback 
becomes obviously disrupted, however, they start to use error-limiting strategies, such as 
slowing their movement down, in order to reduce errors. Users start to increase their 
ratings of task difficulty and feedback disruption from 50 msec, and as such this level 
must be regarded as the point at which latency-induced artifacts became salient. 
However, as error rates continue to rise after this point, it may actually be 100 msec, 
regarded as the upper threshold for the breakdown of the perception of immediate 
causality (Card, 1983), which is really significant when it comes to altering users’ 
strategies and behaviour. 
 
This observation suggests three latency thresholds at which user performance changes: 
 

• At the impact threshold (25 msec), errors increase significantly, but users are yet 
to become aware of the latency. 

• At the perception threshold (50 msec), users perceive latency-induced artifacts 
and start to change their behaviour, but as the movements of the remote 
collaborator still appear smooth, the delay is not disruptive enough to slow 
participants’ movements sufficiently to halt the rise in error rates. 

• At the adaptation threshold (100 msec), the time between updates is sufficient to 
cause a breakdown in the perception of immediate causality, so the remote 
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collaborator’s movements appear jerky and disjointed. From this point onwards, 
people slow their movements in direct proportion to latency to stop the error rate 
from rising any further. 

 
Although this model can be applied to both types of movement investigated here, error 
rates are slightly different in each case: during the initiation period, the error percentage 
rises rapidly to 50 msec, peaks at 100 msec, and then remains static; during the 
movement period, the rate continues to rise after 100 msec, but much more slowly than it 
did initially. Error duration and magnitude remain static in the initiation period. In the 
movement period, magnitude and duration increase in approximately direct proportion to 
latency: the added challenge of moving in another dimension makes it increasingly 
difficult to regain contact as latency grows. It therefore appears that in both cases, people 
adapt by minimizing error frequency – the number of mistakes they make. The different 
percentage error rates for each type of interaction occurs to a large extent because 
magnitude and duration, over which users may have less control, do not increase with 
latency when people are initiating contact, but significantly increase with latency when 
they are moving towards the target.  
 
5. DISCUSSION 

Collaborative Virtual Environments have the potential to greatly enhance long-distance 
communication by enabling people to interact visually and haptically in a shared virtual 
space. However, if we are ever to design CVEs that are truly effective, we must fully 
understand the issues caused by end-to-end network latency. In the work described here, 
we advance this knowledge with regard to the delayed sensory information travelling 
between users. 
 
The aim of the experiment was to quantify performance deterioration and the user’s 
perception of task difficulty in the face of increasingly delayed visual and haptic 
feedback from the remote user. The hypothesis predicted that all the experimental 
measures, whether they applied to haptic or visual feedback, initiating or maintaining 
contact, actual task performance or users’ questionnaire ratings, would increase in direct 
proportion to the amount of latency.  
 
The results showed that the consequences of latency were far more complicated than this, 
varying according to both modality and movement type. Participants were clearly able to 
perceive the effects of delay, as they rated task difficulty and feedback disruption 
consistently higher with every increment in the level of latency above 50 msec. However, 
only in the case of movement times did the questionnaire results bear any direct relation 
to performance deterioration. The rise in error rates started at 25 msec (before users 
perceived the increase in latency), and slowed considerably after 100 msec, despite the 
fact that participants continued to experience a rise in task difficulty and feedback 
disruption. 
 
The Impact-Perceive-Adapt model of performance provides an explanation for this 
pattern of behaviour. It identifies three key thresholds at which user performance changes 
in response to latency. At the impact threshold, errors have started to increase, but users 
are unaware of this fact, so do not take any action to stop it. At the perception threshold, 
people can perceive latency-induced artifacts and start to slow down a little (or use 
another, as yet unknown error reducing strategy), but the effects of delay are not 
sufficient to induce them to slow down enough to halt the rise in errors. At the adaptation 
threshold, the perception of immediate causality breaks down, making the remote 
collaborator’s movements appear discontinuous, and from this point onwards, people 
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slow their movements in direct proportion to latency to stop the error rate from rising any 
further. In the task reported here, the thresholds are at 25 msec, 50 msec and 100 msec 
respectively. All three may vary according to the type of interaction users are engaged in, 
although if the breakdown of the perception of immediate causality underlies the 
adaptation threshold, it should occur between 50 and 100 msec (Card, 1983). 
 
For both types of movement assessed here, this model corresponds broadly to the 
frequency with which people make errors. However, it is important to note that the 
precise manner in which latency impacts on performance is very complex. For example, 
there is an interaction between the types of error: as separation errors drop, penetration 
errors start to rise. The rise in error magnitude and duration during the movement period 
means that the overall error rate takes a different form to the one in the initiation period, 
where these measures remained static, and this in turn may affect error frequency. 
 
To understand the intricacies of how latency affects user performance in CVEs requires 
further investigation. In the current task, low levels of latency were particularly 
detrimental to haptic performance, causing a large number of separation errors. However, 
this may not hold for all types of task or interaction. Further work examining the effects 
of the cross modal interaction would be interesting, as would investigating the 
relationship between latency and task difficulty or type. How would users respond if task 
difficulty were varied, for example, or if users were to manipulate an object, rather than 
touching each other directly? In particular, it would be useful to investigate whether the 
Impact-Perceive-Adapt explanation of user behaviour has a broader application, beyond 
describing the kind of interaction documented here. 
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Appendix A: Results of the Regression Analysis 
This appendix contains all the significant regression results obtained with data from the 
collaborative target acquisition experiment. The best fitting model for each measure is 
displayed in bold. 

 
Model R2 
MT =  3616.33 + 24.1657LAG .98 
MT = 3224.72 + 31.7348LAG – 0.0199 LAG2 .99 
MT = 3505.3 + 20.6393LAG + 0.0541LAG2 - 0.0001 LAG3 .99 

 

Table 9: Regression models for the movement time data (MT). 

 
Model R2 
O_PER = 11.3860 + 0.1875LAG - 0.0010LAG2 + 0.0000014LAG3 .83    
  
P_PER = 1.9966 + 0.0064LAG .73    
P_PER = 1.6432 + 0.0132LAG – 0.00002LAG2 .81    
P_PER = 1.3148 + 0.0262LAG - 0.0001LAG2 + 0.00000014LAG3 .87    
  
S_PER = 10.0416 + 0.1615LAG - 0.0009LAG2 + 0.00000123 .79    

 

Table 10: Regression results for the percentage of time spent in error during the 
initiation period. O_PER = overall; P_PER = penetration; S_PER = separation 

 
 

Model R2 
O_FREQ = 1.5359 + 0.0021LAG .46    
O_FREQ = 1.2178 + 0.0082LAG – 0.00002LAG2 .82    
O_FREQ = 1.0289 + 0.0157LAG – 0.00007LAG2 + 0.000000083LAG3 .93    
  
P_FREQ = 0.3733 - 0.0015LAG .75    
P_FREQ = 0.2513 - 0.0038LAG – 0.000006LAG2 .93    
P_FREQ = 0.1990 + 0.0059LAG – 0.00002LAG2 + 0.000000023LAG3 .96    
  
S_FREQ = 0.9550 + 0.0045LAG – 0.00001LAG2 .66    
S_FREQ = 0.8172 + 0.0099LAG – 0.00005LAG2 + 0.00000006LAG3 .87    

Table 11: Regression results for error frequency/sec during the initiation period. 
O_FREQ = overall; P_FREQ = penetration; S_FREQ = separation. 
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Model R2 
M_MAG = 0.0905 + 0.0001LAG .48   
M_MAG = 0.0813 + 0.0003LAG – 0.0000005LAG2 .61   
  
P_MAG = 0.1242 + 0.000092LAG .80   
P_MAG = 0.1224 + 0.0001LAG – 0.00000009LAG2 .81   
P_MAG = 0.127 – 0.00006LAG – 0.0000011LAG2 – 0.000000002LAG3 .87   
  
S_MAG = 0.1097 + 0.0002LAG .75   
S_MAG = 0.0936 + 0.0005LAG – 0.0000008LAG2 .94   
S_MAG = 0.0869 + 0.0008LAG –0.000003LAG2 + 0.0000000029LAG3 .97   

Table 12: Regression results for error magnitude during the initiation period. M_MAG = 
mean; P_MAG = penetration; S_MAG = separation. 

 
 

Model  R2 
O_PER = 27.5725 + 0.0479LAG .65    
O_PER = 22.6374 + 0.1433LAG - 0.0003LAG2 .88    
O_PER = 19.0438 + 0.2854LAG - 0.0012LAG2 + 0.00000163 .99    
  
A_PER = 7.0992 + 0.0161LAG .72    
A_PER = 5.8506 + 0.0403LAG – 0.00006LAG2 .86    
A_PER = 5.6387 + 0.0487LAG - 0.0001LAG2 + 0.000000093LAG3 .87    
  
P_PER = 2.5412 + 0.0131LAG .78    
P_PER = 1.8854 + 0.0258LAG – 0.00003LAG2 .85    
P_PER = 1.5750 + 0.0381LAG - 0.0001LAG2 + 0.00000014LAG3 .86    
  
S_PER = 11.8301 + 0.1987LAG - 0.001LAG2 + 0.0000013LAG3 .76    

Table 13: Regression results for the percentage of time spent in error during the 
movement period. O_PER = overall; A_PER = aiming; P_PER = penetration; S_PER = 

separation. 
Model R2 
O_FREQ = 0.0087LAG – 0.00005LAG2 + 0.00000007LAG3 .86    
  
A_FREQ = 0.1062 + 0.0001LAG .53    
A_FREQ = 0.0899 + 0.0004LAG – 0.0000008LAG2 .90    
A_FREQ = 0.0827 + 0.0007LAG – 0.000003LAG2 + 0.0000000032LAG3 .96    
  
P_FREQ = 0.1215 + 0.001 LAG – 0.000002LAG2 .66    
P_FREQ = 0.0890 + 0.0023LAG – 0.00001LAG2 + 0.000000014LAG3 .86    
  
S_FREQ = 0.5567 + 0.0057LAG – 0.00004LAG2 + 0.000000053LAG3 .80    

Table 14: Regression results for error frequency/sec during the movement period. 
O_FREQ = overall; A_FREQ = aiming; P_FREQ = penetration; S_FREQ = separation. 
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Model R2 
M_MAG = 0.3344 + 0.0011LAG .87   
M_MAG = 0.2846 + 0.0021LAG – 0.000003LAG2 .93   
M_MAG = 0.2700 + 0.0026LAG – 0.000006LAG2 + 0.0000000064LAG3 .93   
  
P_MAG = 0.2514 + 0.0020 .86   
P_MAG = 0.1609 + 0.0037LAG – 0.000005LAG2 .92   
P_MAG = 0.1325 + 0.0049LAG – 0.00001LAG2 - 0.000000012LAG3 .93   
  
S_MAG = 0.1052 + 0.0010LAG .99   
S_MAG = 0.0936 + 0.0012LAG – 0.0000006LAG2 .99   
S_MAG = 0.1025 + 0.0009LAG + 0.0000018LAG2 – 0.000000004LAG3 .99   

Table 15: Regression results for error magnitude during the movement period. M_MAG 
= mean; P_MAG = penetration; S_MAG = separation. 

 
 

Model R2 
ID = 1.8575 + 0.0081LAG      .98    
ID = 0.7046 + 0.0111LAG - 0.000008LAG2 .99    
ID = 1.7901 + 0.0077 + 0.000015LAG2 - 0.00000004LAG3 .99    
  
IV = 1.9238 + 0.0073LAG .97    
IV = 1.7889 + 0.0099LAG - 0.000007LAG2 .98    
IV = 1.8040 + 0.0093LAG – 0.000003LAG2 - 0.000000007LAG3 .98    
  
IH = 1.9779 + 0.0074LAG .96    
IH = 1.7522 + 0.0118LAG - 0.00001LAG2 .99    
IH = 1.7800 + 0.0107LAG - 0.000004LAG2 - 0.00000001LAG3 .99    
  
MD = 1.9598 + 0.0084LAG .98    
MD = 1.7930 + 0.0116LAG - 0.000008LAG2 .99    
MD = 1.7694 + 0.0125LAG - 0.00001LAG2 + 0.00000001LAG3 .99    
  
MV = 2.0006 + 0.0079LAG .98    
MV = 1.8459 + 0.0109LAG – 0.000008LAG2 .99    
MV = 1.8675 + 0.0100LAG – 0.000002LAG2 – 0.000000009LAG3 .99    
  
MH = 2.1692 + 0.0073LAG .94    
MH = 1.9469 + 0.0116LAG – 0.00001LAG2 .97    
MH = 1.7633 + 0.0189LAG – 0.00006LAG2 + 0.000000081LAG3 .99    

 

Table 16: Regression results for difficulty and disruption ratings. I = initiating contact; 
M = maintaining contact; D = overall difficulty; V = visual disruption; H = haptic 

disruption. 

 


