MULTI-BODY SIMULATION IN VIRTUAL ENVIRONMENTS

Mashhuda Glencross and Alan Murta
Department of Computer Science
University of Manchester
Oxford Road
Manchester M13 9PL
United Kingdom

Email glencross@cs.man.ac.uk

Abstract

This paper describes a simulator which uses a unique
hybrid particle system and dynamic constraint based
model to compute the behaviour of interacting multi-
body systems in a virtual environment. Simulations can
be influenced by the user at run-time, so there are im-
portant interaction issues addressed. The need for such
systems in virtual reality applications ranging from tis-
sue modelling in surgical training software to use in en-
tertainment, is apparent. Purely, a visual effect does
not suffice in this context, as the behaviour of objects
in the scene must be plausible enough to convince the
user. Our approach provides a unified system for simu-
lating a wide spectrum of deformable and/or rigid ma-
terial behaviours in virtual environments. An example
of a virtual chain, which the user can interact with, is
provided.

Keywords: constraint based, physically based, in-
teraction forces, rigid bodies, multi bodies, particle sys-
tems, virtual reality.

1 Introduction

To simulate the behaviour of deformable or rigid mater-
ials subject to forces requires a physically based model.
Many such models have been successfully used in com-
puter animation. Constraint based modelling is a tech-
nique in which forces are calculated in order to control
the motion of a system. It is frequently used to animate
articulated rigid body systems [2, 1, 7, 5, 9]. Other ap-
proaches concentrate purely on animating deformable
materials [8, 10, 16, 17]. However, most of these ap-
proaches are too computationally intensive to be used
in virtual reality (VR) applications, where a real time
response is of paramount importance.

Ideally we wish to simulate both rigid and deformable
material responses, but this is complex and some VR

systems which have evolved use purely rigid body mod-
els. Other systems use spring mesh primitives to build
up larger bodies, such as Holton’s muscle model [6].
Such models are confined to deformable material be-
haviour only. A unified model capable of simulating
both rigid and deformable behaviours is very appealing
because the real world has both. Chapman and Wills’
unified model uses modal analysis [4] to simplify the fi-
nite element equations of rigid and deformable motion.
However, it is difficult to produce a desired behaviour
using finite element based techniques because all ele-
ments are treated in the same way, and the parameters
which govern their deformation behaviour are unintuit-
ive.

Our approach is to use a hybrid model based on
particle primitives which can be connected by rigid con-
nections or force functions of any type. The user can
simulate the desired behaviour by specifying complex
interactions between particles and incorporating rigid
and/or articulating components. This produces very
interesting material behaviours.

We also address some important user interaction is-
sues arising from the highly interactive nature of VR
systems. Qur scenes are very dynamic and the user may
make or break model primitives at any point during the
course of the simulation. User interaction is impossible
to predict and so we take certain measures which are
described in sections 2.3 and 4 to enable the model to
deal with this.

2 Model Primitives

We provide a number of model primitives (described in
section 2.1) and a high level library of force functions.
This enables us to build up interesting materials with
any combination of rigid and deformable characteristics.
Figure 1 shows an example of a material which could
be simulated using rigid building blocks and articulat-



ing hinges. The non-auxetic material becomes thinner
when a deforming force is applied, whereas the auxetic
material fills out [3].

Non-auxetic
i
&

Auxetic

oo

Figure 1: Non-auxetic and auxetic material deformation
behaviours.

It is also important to note that any force function
can be programmed in a script which defines the scene
if a function from the library does not suffice. This leads
to a great deal of flexibility when assigning behaviours
to bodies.

2.1 Interacting Particles

Researchers have used particle based models for simulat-
ing a wide range of natural phenomena from fire and wa-
terfalls to wind-blown leaves [11, 14, 18]. These effects
are achieved by rendering particles in different ways and
changing their attributes as some function of time. All
of these particle based models have some type of force
acting on them. Typically these are global forces such
as gravity and act on all the particles in the scene indis-
criminately [11]. More complex effects such as flocking
can be achieved by introducing particle-particle inter-
actions [12].

We use a unique representation of particles as being
composed of one or more points, depending on whether
or not a particle is also a hinge. A point is merely a point
mass in space with some data associated, for example
colour. The benefits of this approach are described in
further detail in section 2.3.

2.1.1 Families of Particles

Particles can be considered at a high level as belonging
to families, where a family is a group of one or more

particles. Their interaction behaviour can be specified
by non-rigid connections (force functions) which apply
either within the family and/or between it and other
families.

Families of particles may have multiple force functions
attached due to the flexibility inherent in the model.
This can lead to some very sophisticated cumulative be-
haviour. For example, the hydrophobic type behaviour
shown in figure 2.

Obo/,.l Rigid connection
Q/O O\Q

i

Particle interaction rules:

O @ = Repel
O O = Attract
O O =Repel

Figure 2: A system of bodies with complex interactions.

There are five bodies shown in the scene, each com-
prises two particles connected by a rigid component.
The particles are from different families and their rel-
ative interaction rules are shown. In three dimensions
this type of behaviour can produce surface forming sys-
tems [15] but at comparatively little computational cost.

2.2 Rigid Bodies

Much of the research into rigid body systems has fo-
cused on simulating the motion of purely rigid bodies,
subject to forces such as gravity for animation purposes.
A simple rigid body’s motion is affected most signific-
antly by the distribution of mass within it. There is
always one unique point called the centre of mass which
can be used to compute the motion of such a body. We
provide such bodies which may also have interaction
behaviours. These types of bodies can interact with
anything in the scene if a behaviour is specified, but
individual particles within any given body are subject
to a geometric rigidity constraint. Thus the relative
positions of such particles within a body remains un-
changed.

If the body contains joints capable of articulating the
problem of computing its motion is not so simple.



2.3 Hinge Particles

When a particle is also a hinge our representation
of particles becomes important. Notionally, a hinge
particle behaves just like an ordinary particle with as-
sociated characteristics such as mass, colour, lifetime
etc. However, it is made up of two or more mem-
ber points which belong to the bodies it relates. Point
data is stored in a ring data structure, as shown in fig-
ure 3. Each member point has its own local data which
declares its properties, a pointer to the next member
and access to some global information about the hinge
particle itself.

This representation enables intuitive access to mem-
bers when applying hinge constraints. Furthermore, it
provides some consistent framework for assigning and
applying the hinge particles properties when two or
more bodies with different characteristics are connec-
ted together.

Figure 3: Figure showing two points in a ring making up
a particle, each with its own ‘Local Data’, and sharing
‘Global Data’

Enhancing the simulator to respect the sharing of
particles between bodies and so provide ‘hinging’ adds
a great deal of complexity to the model described. To
keep the hinges intact we use one from our suite of dy-
namic constraints which is similar to Barzel and Barr’s
point to point constraint [1, 2]. However, our technique
is more suited to VR applications where performance,
and the need to change the mass of bodies at run-time
is of particular importance.

Barzel and Barr retain bodies in their own co-ordinate
frame, transforming them into world space as required.
This has the advantage that the moment of inertia re-
mains constant. However, this assumes that the scene
is relatively static, in that the mass of bodies remains
unchanged during a simulation.

We argue that Barzel and Barr’s coordinate frames
approach can be traded off against the need to com-
pute the inertia matrix for bodies at the start of each
frame. Recomputing the inertia matrix every frame is
necessary in our approach but it gives us mass and to-
pology changes without any further computational cost.

A body’s mass is dynamic in our system, the user may
combine two bodies to make one articulating body or
may pull one apart. In either case, the mass of the res-
ulting body or bodies will probably be different. Fig-
ure 4 shows two bodies which are scripted to combine
and make a hinge point when the hinge constraint is
met at point P.

O/‘(\)

Rigid connection

oP

Force connection

Figure 4: Two bodies approaching the constraint point
P

2.4 Structural Primitives

We provide a high level library of structural primitives
which are the building blocks of a scene. The config-
uration of these arise from molecular data and regular
polyhedra. The main reason for providing this is to
enable easy description of very complex scenes, this ap-
proach gives the user significant control over the con-
figuration of the stable state of the system. The user
has a choice about the type of connections to specify
between particles in these structures, rigid or deform-
able. In addition routines are provided to build these
structures from rigid bodies and articulating joints.

3 Performance Considerations

Articulates are a concept provided purely to improve the
performance of the system. Articulates are groups of
bodies related to each other by hinge particles, and are
hidden from the user. This grouping of bodies reduces
the problem of finding unknown forces to the smallest
number of particles possible, allowing the solver to only
work within the domain of one articulate at a time.
This concept also potentially lends itself to a parallel
algorithm in which articulates, which need to be solved,
can be dispatched to free processors.

4 Temporal Sequencing

Temporal sequencing is provided to choreograph a sim-
ulation. For example, at some time the user may want
all the connections in certain bodies to break and so
effect a melting behaviour. We can create or destroy



connections as a function of time or system ‘temperat-
ure’. In addition it is possible to do the same to bodies
and hinges. This facility poses a problem at run-time as
it may be defined in a script which has no knowledge of
the user’s intervention. Hence, run-time conflicts may
occur between the script and the actual scene at any
time ¢. For example, we may have scripted all the con-
nections in a body bodyl to break at ¢ = 100, however,
the user may have destroyed bodyl at ¢ = 50. In this
particular case we would not apply the event.

5 The Simulator

Computing the motion of primitives for each frame is
illustrated by the following pseudo-code:

1. Apply forces associated with non-rigid connections
to particles.

2. For each Articulate:

(a) Compute Centre of mass, Mass, Moment of In-
ertia, Net Force/Torque for each body in Ar-
ticulate ; Tally number of unknown Forces in
Articulate.

(b) If number of unknown forces > 0
i. Call Solver to find unknowns

(c) Apply forces to get new positions of all
particles in an Articulate.

3. Draw scene.

The solver calls a method which writes the unknowns
into the particles which they correspond to, then recom-
putes accelerations and velocities for each body. The
constrained points are then revisited and a metric which
should become zero is calculated. For example, “how
far is a constrained point from its target destination?”
These values are finally accumulated into a vector for
returning as the results passed out.

The solver uses a Newton Raphson iteration with line
backtracking and the time frame is advanced by per-
forming a simple Euler integration of all the forces. The
simulator engine is written in C++ and interfaced to
Perl which is used as the system scripting language.

6 Results

We give a simple example of a virtual chain falling un-
der gravity, Figure 5 shows the chain at two instances
during its motion. This example was chosen to give
a comparison with Barr et al. The chain is composed
of rigid bodies and hinge points. It is driven by the
user in virtual space. We achieve this by constraining
a particle on the first body in the chain to follow the

mouse. Any particle can be constrained in this way, in
fact in a simulation with two mice, this type of chain can
be manipulated via two particles. The user can move
the chain about and pull it apart or play with it as if it
were a virtual skipping rope.

Figure 5: A virtual chain.

7 Conclusions

The contribution of this work lies in taking aspects from
particle based models and rigid body systems and com-
bining them to create a unified approach to simulating
plausible material behaviour in virtual environments.
Our system enables us to build very sophisticated scenes
and set up complex interactions between primitives. In
addition, the user can interact with the simulation and
affect its course. We have also touched upon some very
interesting issues which arise from using scripting in a
highly interactive system.

A Appendix

A.1 Equations of motion

The equations of motion used in the work described
in this paper are derived from the standard Newtonian
equations of motion. To evaluate our constraint forces
we start with the definition of absolute velocity as the
rate of change of a particle’s position vector g, written
as
dp -
T=—=p 1
g (1)
In turn, the rate of change of a particle’s velocity is
defined to be the particle’s acceleration.

v . d*p

%217:@:5 (2)

o
a=

Since @ = f /m gives the instantaneous acceleration of a
particle, it is necessary to integrate Equation 2 to obtain
the path of a particle.

ﬁ:/ﬁdt+ﬁ=//adt2+ﬁ (3)



where 1;7 derives from the boundary condition.

Similarly, rotational torques for bodies are calculated
by summing cross products of forces and particle posi-
tions as in Equation 4. This provides an angular accel-
eration which is also integrated. The resulting vector is
converted to a matrix [13] and applied to each particle
in the body. This vector to matrix conversion is per-
formed by a function A4.

e=pAf (4)
Equation 5 specifies the motion of bodies in the sim-
ulator. 5a moves the body to the origin and performs a

rotation, while 5b moves it back. Then 5c¢ performs an
appropriate translation.

N

Fan = A (m TS Fan A Gan - m)
n=1

(Pan — Pa) (5a)

+ Py (5b)

+ (Va+ = FaMh) (5¢)

Our convention to represent a body is a capitalised
subscript; A in the above case. The lower case subscript
indicates a particle which belongs to the body.

Acknowledgements

I would like to thank my husband Nick Glencross for
proof reading and constructive criticism. I would also
like to thank Dr. Richard Zobel for his encouragement.

References

[1] Ronen Barzel.  Physically-Based Modelling for
Computer Graphics. Academic Press, San Diego,
CA, 1992.

[2] Ronen Barzel and Alan Barr. A modelling system
based on dynamic constraints. Computer Graphics,
22(4):179-188, August 1988.

[3] Maria Burke. A stretch of the imagination. New
Scientist, 154(2085):36-39, June 1997.

[4] Peter M. Chapman and Derek P.M. Wills. Towards
a unified physical model for virtual environments.
In Proc. 4th UK VR-SIG Conference, Brunel Uni-
versity, UK., November 1997.

[5] Jean-Dominique Gascuel.  Displacement con-
straints: a new method for interactive dynamic an-
imation of articulated solids. In Third Eurograph-
ics Workshop on Animation and Simulation, Cam-
bridge, England, September 1992.

[6] Matthew Holton and Simon Alexander. Soft cel-
lular modelling: A technique for the simulation of
non-rigid materials. In Computer Graphics: Devel-
opments in Virtual Environments, pages 449 — 460.
Academic Press, 1995.

[7] Devendra Kalra and Alan H. Barr. A unified frame-
work for constraint-based modeling. In Proc. CG
International ’92, pages 675-695, 1992.

[8] G. Miller and A. Pearce. Globular dynamics: A
connected particle system for animating viscous
fluids. Computers and Graphics, 13(3):305-309,
1989.

[9] C. Van Overveld. An iterative approach to dynamic
simulation of 3-d rigid-body motions for real-time
interactive computer animation. The Visual Com-
puter, 7:29-38, 1991.

[10] J.C. Platt and A.H. Barr. Constraint methods for
flexible models. Computer Graphics, 22(4):279-
288, August 1988.

[11] W.T. Reeves. Particle systems — a technique for
modeling a class of fuzzy objects. Computer Graph-
ics, 17(3):359-376, July 1983.

[12] C.W. Reynolds. Flocks, herds and schools: A dis-
tributed behavioral model. Computer Graphics,
21(4):25-34, July 1987.

[13] F. P. Sayer and J. A. Bones. Applied Mechanics
A modern approach. Chapman and Hall, London,
1990.

[14] Karl Simms. Particle animation and rendering us-
ing data parallel computation. Computer Graphics,
24(4):405-413, August 1990.

[15] R. Szeliski and D. Tonnesen. Surface modeling with
oriented particle systems. Technical Report CRL
91/14, Cambridge Research Lab, December 1991.

[16] D. Terzopoulos and K. Fleischer. Deformable mod-
els. The Visual Computer, 4(6):306-331, December
1988.

[17] D. Terzopoulos, J. Platt, and K. Fleischer. From
goop to glop: Heating and melting deformable
models. In Graphics Interface, pages 219-226, June
1989.

[18] Jakub Wejchert and David Haumann. Animation
aerodynamics. Computer Graphics, 25(4):19-22,
1991.



