
Dynamic Primitive Caching for Haptic Rendering of Large-Scale Models

Mashhuda Glencross Roger Hubbold Ben Lyons

Advanced Interfaces Group
Department of Computer Science

The University of Manchester
UK

E-mail: mashhuda@manchester.ac.uk

Abstract

In this paper we present a software approach to man-
aging complexity for haptic rendering of large-scale geo-
metric models, consisting of tens to hundreds of thousands
of distinct geometric primitives. A secondary client-side
caching mechanism, exploiting partitioning, is used to dy-
namically update geometry within the locality of a user.
Results show that the caching mechanism performs well,
and that graphical rendering performance becomes an is-
sue before the caching mechanism fails. The performance
penalty of the caching technique was found to be depen-
dent on the type of partitioning method employed.

1 Introduction

Haptic rendering of massive models poses a major chal-
lenge: how to achieve a rendering speed of 1KHz [2], or
better. Even with today’s fast processing speeds, the num-
ber of geometric primitives that can be rendered must be
reduced to a small subset of the complete model. It is at-
tractive to be able to haptically render large-scale virtual
environments for computer aided design, path planning,
evacuation planning and similar applications.

Many common APIs, such as GHOST [4] use fast
bounding box tests to reduce the haptic rendering cost.
For haptic display of large-scale models, researchers Ray-
maekers and Coninx [3] and Acosta and Tempkin [1] each
discuss the limitations of this approach. In preliminary tri-
als we found that stable haptic rendering of the GHOST
scene graph is not possible beyond 500 distinct primitives.
This is consistent with Acosta et al.’s [1] findings, mean-
ing that haptic rendering of large-scale models through
GHOST alone is not easily viable. The use of bounding
boxes and hierarchical processing alone is insufficient for
haptic rendering of large-scale models. Our approach de-
couples the choice of which primitives to consider from
the haptic scene graph dynamically re-creating the haptic

model.
In subsequent sections we describe thehaptic cache,

and results from a number of large-scale virtual environ-
ments containing between 2,000 and 120,000 distinct geo-
metric primitives. We conclude with observations and per-
formance metrics from this study.

2 The haptic cache

The haptic cache transparently provides a secondary
client-side buffer, within which geometric primitives in the
locality of the haptic device’s end effector are automati-
cally maintained. The size of the cache and the number
of primitives that can be supplied to the haptic server are
configurable, as different haptic APIs provide very differ-
ent limitations. The state of the haptic server-side model is
dynamically maintained on-the-fly by the cache which en-
ables/disables or creates/destroys geometry, thereby min-
imising the number of primitives that need to be haptically
rendered.

Large-scale models are partitioned into one of two pos-
sible forms, a coarse uniform voxel grid cell, or hierarchies
of axis aligned bounding (HBB) volumes. These are used
to dynamically determine a possible set of geometric prim-
itives in the user’slocality and populate the cache. If re-
quired, the number of primitives is further reduced using
proximity queries.

3 Case Studies

In this section we present a case study application capa-
ble of haptically rendering large-scale virtual environments
using the cache. We profile the application by compar-
ing frame rates against the size of model, with and without
haptic feedback. We also compare the performance penalty
associated with using voxel grids and HBBs.

Screen-shots from two models of process plants show
primitives being activated and de-activated as the user nav-
igates through the environment. The model shown in



Figure 1: Interaction sequence with a small model

Figure 2: Interaction sequence with a large model

Figure 1 contains just 1,974 distinct geometric primitives
while the second in Figure 2 contains 25,230. The user
may haptically interact with any of the primitives in the lo-
cality. Performance metrics are presented for a range of
models containing up-to 111,110 distinct geometric primi-
tives (approximately six million triangles).

Both sequences of images show the user moving the
end-effector (rendered as a small sphere) through the en-
vironment. As geometric primitives are enabled they are
highlighted, reverting to their original colour when dis-
abled in the haptic server.

3.1 Performance metrics

The graph shown in Figure 3 plots performance for purely
graphical rendering and graphical/haptic rendering using
HBBs, and voxel grids to populate the cache. Error bars
indicate the range of frame-rates achieved for a particular
number of geometric primitives. Since the renderer makes
use of view culling techniques to minimise the rendering
performed for each frame, this range is broad.

Performance is shown to slightly degrade through the
use of the cache in conjunction with HBBs. Initially, the
voxel-grid approach seems to outperform the HBB ap-
proach but for larger models the computation overhead
of the proximity queries has a notable negative impact
on frame-rate. The number of queries needing to be
performed depends on the granularity of the partitioning
scheme and this situation can be improved by increasing
the number of subdivisions. However, this comes at a sig-

0 50 k 100 k
Geometric Primitives

0

20

40

60

80

Fr
am

er
at

e 
(f

ps
)

Graphical Rendering
HBB Partitioning
Voxel Partitioning

Figure 3: Performance graphs

nificant additional cost to the memory footprint. For large-
scale model rendering, this additional memory overhead is
critical and cannot be afforded. Therefore, the primitive
based partitioning scheme using HBBs is preferable.

4 Conclusions

We have shown that a secondary haptic cache can be
used to manage the complexity of large-scale haptically
enabled virtual environments which are too complex to
be handled in their entirety by haptic APIs. We use two
partitioning schemes one being spatial and the other being
primitive based. HBB partitioning scheme is shown to be
more suited to large-scale model rendering compared to the
voxel grid approach due to the lower dependency on gran-
ularity of the partitions and associated memory footprint.
We have shown this result quantitatively with models con-
taining under 120,000 distinct geometric primitives.

References

[1] Eric Acosta and Bharti Temkin. Scene complexity:
A measure for real-time stable haptic applications. In
Sixth PHANToM Users Group Workshop, Aspen, CO,
USA, 2001.

[2] Grigore C. Burdea.Force and Touch Feedback for Vir-
tual Reality. John Wiley and Sons, Inc., 1996.

[3] Chris Raymaekers and Karin Coninx. Improving hap-
tic rendering of complex scenes using spatial parti-
tioning. In Eurohaptics, pages 193–205, Dublin, July
2003.

[4] SensAble Technologies. GHOST software devel-
opment kit. Online document – active on Oc-
tober 2004. 〈http://www.sensable.com/
products/phantom_ghost/ghost.asp 〉.

2

http://www.sensable.com/products/phantom_ghost/ghost.asp
http://www.sensable.com/products/phantom_ghost/ghost.asp

	Introduction
	The haptic cache
	Case Studies
	Performance metrics

	Conclusions

