A Virtual Jacob’s Ladder

M ashhuda Glencross and Alan Murta

Advanced Interfaces Group
Manchester, UK

Abstract

An algorithm for modelling and simulating a virtual Jacob’s
ladder is presented. Its motion is computed using our phys-
ically based simulator lota. The model used to represent the
Jacob’s ladder is dynamically restructured during the simu-
lation via scripted events, but can also be performed interac-
tively by the user.

Modelling a Jacob’s ladder is achieved by reducing the
problem to two dimensions by observing that the connectiv-
ity of blocks results in the loss of a degree of freedom in the
hinges. Simulating the motion of the model is affected by
dynamically altering the connectivity of blocks in the model.

Finally, we show the Jacob’s ladder in the context of a
virtual environment in which a user can navigate and drive
the simulation in real-time.

Keywords: constraint based, physically based, interaction
forces, rigid bodies, multi bodies, particle systems, virtual
reality

1 INTRODUCTION

Many researchers world-wide have investigated various
techniques to improve the quality of the graphics in virtual
reality (VR) systems [9, 8]. The majority of the VR demos
we see today offer little more than the opportunity to walk
through a largely static environment and interact with it at a
very basic level by, for example, picking up objects. Users
are provided with many labyrinths to explore but there is lit-
tle to actually capture the imagination.

A number of dynamic VR systems do exist, but they tend
to be for specific applications such as simulating the be-
haviour of crowds in an emergency®. More interestingly, a
small number of people are now working on general purpose
real-time physics based simulators [6, 11, 3] to compute the
behaviour of virtual objects. The motivation of this type of
research lies in the desire to create dynamic virtual environ-
ments (VES).

The applications for software capable of plausibly sim-
ulating the motion of objects subject to real world physics
at suitably interactive frame rates is widespread. Many VR
systems designed to aid any sort of assembly process [5] can
benefit from a good simulator. Moreover the entertainment

for example Colt VR's Vector software

appeal of such a system in the games industry is vast and this
prospect has motivated the development of software such as
MathEngine [11].

In this paper we describe an algorithm which uses our
general purpose physically based simulator software (lota)
for modelling and interactive simulation of a children’s toy.
The simulator uses rigid bodies, particle systems forces and
hinges to model objects [6], and we give an overview here.

2 OVERVIEW OF THE SIMULATOR

The core simulator shown in Figure 1 consists of a scene
modification block which can be used to preprocess the scene
if required, and then the frame is advanced. This requires a

;

Scene Modification

>0

Solver
Do Equations Solve? Calculate Unknowns
A

Integrate Equations

Advance frame )

\J
N
|i
&

L

Figure 1: Overview of the simulator

number of different types of computation.

The physical model incorporates both interacting particle
systems and articulated rigid bodies, so a scene could consist
of any combination of them. Indeed the types of interactions
possible can be very powerful and can be used to simulate
quite subtle but sophisticated behaviours. More importantly
interactions may occur between:

e Particles

¢ Rigid bodies

e Articulating rigid bodies

e Particles and rigid bodies

¢ Particles and parts of articulating rigid bodies



External forces may also be used to direct the motion of par-
ticles. Once all these forces are applied to the particles upon
which they act, the constraint forces (if any) in hinges need
to be computed.

For this part of the computation the simulator calls upon
the services of our numerical solver module which is based
on Newton Raphson [10] with line backtracking. We have
modified the solver to make it more robust, which is essential
in a VR application, as a model which spontaneously falls
apart when least expected can be disconcerting. Once all
the unknown forces in the hinges have been computed, they
are also accumulated onto the particles upon which they act.
Finally an Euler integration is used to integrate the equations
of motion over a time interval.

The scene modification (preprocessing) stage gives us an
opportunity to restructure the whole scene taking account of
any changes to the data as a result of user intervention. Users
are able to assemble and disassemble (dynamically restruc-
ture) models at run-time via the use of combine and separate
routines. Broadly speaking the combine routine combines
two particles passed to it into one particle and the separate
routine separates them. The specific behaviour of these is
complex and depends on the relationship between the two
particles passed to them. For readers seeking further details
please refer to A Framework for Physically Based Modelling
in Virtual Environments [7]

The Simulator engine is written in C++ and interfaced to
Perl which is used as the system scripting language, while
GNU MAVERIK is used for the VR graphics.

3 SIMULATING A JACOB’S LADDER

In this section we introduce a children’s toy known as a “Ja-
cob’s Ladder”. It is traditionally constructed using blocks
of wood and ribbons as shown in Figure 2. Due to way in

Figure 2: Jacob’s ladder

which the ribbons connect to the blocks, each block can only
tip in one direction which alternates along the length of the
toy. If there are enough blocks in the ladder, multiple ripples
can be sent down its length. Consider the situation in which

two ripples are propagating along the toy; should the situa-
tion arise where the second ripple started too soon after the
first, it may catch up and cancel them both out.

To be able to simulate the motion of a Jacob’s ladder, it
is necessary to understand the behaviour of a hinge (two
blocks) as shown in Figure 3. Let us assume that the lower

Figure 3: The behaviour of a single hinge in a Jacob’s ladder

block is held still so that the behaviour of the upper block
can be seen in relation to it. The upper (lighter grey) block
starts at the top with two outer ribbons on it and the second
block starts with just one central ribbon. When it is tipped
over, it swaps to be at the bottom turning 180° at each end of
the second block. Notice how the ribbons swap so that the
block now at the top still has two ribbons.

Now consider what happens when we hold the first block
and allow it to tip. Say it rotates clockwise through 180°
bringing the top of it in contact with the bottom of the next
block. If we continue to hold it then the second block tips
through 180° anti-clockwise and so on, allowing a ripple to
propagate down the length of the ladder. The important thing
to realise is that each block’s orientation is flipped and this
can be seen by the alternation of the ribbons on the face of
each block. The motion of the blocks appears simple at a first
glance, but as we can see it is complex and can be hard to
visualise. To be able to simulate this type of motion we need
to specify a suitable model which will exhibit the appropriate
behaviour.

4 BUILDING THE MODEL

To utilise the physical model for computing motion in the
simulator, each block is modelled using simulator primi-
tives. A number of possible configurations of these primi-
tives could be used to construct the model. In the interests of



performance it would be desirable to minimise the amount
of computation required. A carefully chosen model can sig-
nificantly improve the interactive response of the simulation.

Imagine viewing a Jacob’s ladder side-on as shown in Fig-
ure 2. In this diagram the toy is oriented such that the narrow
side face of each block appears to be at the front with the re-
mainder receding into the paper. Our model abstracts away
much of the detail while trying to secure as much of the be-
haviour as possible. This is achieved by retaining the essence
of a block by representing it as a two dimensional body with
four particles situated at the corners of the narrow face and
one in the centre. The advantage of this approach being that
each hinge consists of two particles thus providing a contri-
bution of one equation in each dimension. This means that
only two equations per hinge have to be solved simultane-
ously. We justify this by the observation that the hinges in
the ladder cannot twist and so each hinge actually only has
two degrees of freedom.

Unlike the model, blocks in a real Jacob’s ladder do not ac-
tually rotate about a hinge but instead approximately about
a point where the ribbons on each block cross. However at
speed it appears simply as if the hinging occurs at the point
where the blocks meet, corresponding to the hinges in our
model. This further justifies the approach taken to model
the Jacob’s ladder. A numbering convention, shown in Fig-
ure 4 was adopted to represent the bodies and particles which
make up the model. Each block is constructed from a body of

3(=11) 1 1 (=01,

2(=10)
2(=10,)

= 0(=00,)

0 (= 00,)
31 L] 1oy
3(=11) 7 1(=01)

2(=10,)
2(=10)

0(=00,)
0(=00,)

—

3(=1) L] 1(=01)

Figure 4: Numbering convention adopted in Jacob’s ladder

five particles numbered from 0 to V. The four corner ones
are numbered such that they reflect the system’s symmetry
and this in turn allows code to be written using relationships
between adjacent blocks to reduce duplication.

A number of observations may be made with respect to
this labelling of particles:

¢ Particles which hinge will always be numbered the
same on both blocks

e Odd numbered blocks (1, 3, 5, ... ) will hinge on cor-
ners 0 and 1 with previous blocks

e Even numbered blocks (0, 2, 4, ... ) will hinge with the
previous block on corners 2 and 3

e Exclusive-oring with 01, will enable us to traverse a
block along its length from any corner.

o Similarly, exclusive-oring with 10, enables the width of
a block to be traversed from any corner.

¢ It has been found useful to view each block as possess-
ing two orientations, lengthwise and widthwise. In the
initial state lengthwise orientations are alternately up
and down, whereas widthwise orientations point right
to left.

The implications of these observations will become clearer
in the following section.

5 SIMULATING THE MODEL

Actually simulating the motion of the entire ladder involves
specifying the behaviour of a single hinge. Once the con-
straints on the motion of the model are understood, the phys-
ical model in the simulator can be used to compute the over-
all motion of the system. As we will see, many subtleties in
the motion of the real toy appear in the virtual one. First let
us consider the motion of one hinge again, but this time in a
more rigorous fashion.

ole N
d

Figure 5: Allowable motion of a hinge in a Jacob’s ladder

Figure 5 shows a pair of hinged blocks. Their range of al-
lowable motion is confined to quadrants 1 and 3. Notice the
position of the black dot representing the hinge as it is signif-
icant and governs the direction in which a block is allowed
to tip. Moreover observe the lengthwise orientation vectors
on the blocks as these too are also important.

Consider the first configuration of the pair of blocks, as-
suming that the second block remains stationary. If an at-
tempt is made to push the first block into the shaded region
both blocks will lock preventing any further intrusion into
that region. The first block is allowed to move into quadrant
1 if it is subject to an unbalanced force which encourages



it to do so. Following the sequence of allowable motion of
the block it can be seen that after a 180° rotation the hinge
is broken and reassembled at the bottom end of the second
block and then the first block is allowed to continue through
another 180° turn. This swapping of the order of the blocks
is termed a flip-flop.

Now observe the relationship of the lengthwise orienta-
tion vectors, initially the first block’s vector points upwards
and the second block’s points downwards. After a 180° turn
the vectors both point down and after a flip-flop they point
towards the hinge. These orientations can be examined to
determine a couple of things. Firstly if the magnitude of the
cross product of the two vectors is less than zero then an at-
tempt has been made to enter quadrant 2 or 4. This means
that some sort of action is required, the type of which can be
determined by adding both vectors together and examining
their magnitude. A small number resulting from the sum of
the vectors implies that the pair of blocks have to be locked
(see Algorithm 3) whereas a large number implies that the
blocks have to be flip-flopped (see Algorithm 2). If the mag-
nitude of the cross product of both vectors is greater than
zero then no action is required.

The behaviour of one pair of hinging blocks has now been
formalised so we can describe the algorithm for simulating
the Jacob’s ladder which is shown in Algorithm 1.

Algorithm 1 Main Jacob’s ladder algorithm
1: for all block in ladder (excluding first one) do
2. if hinge is locked then
3 if torques acting on current and previous blocks
cause them to unlock then

4 Unlock hinge {Algorithm 4}
5; end if
6. €lse
7: Calculate lengthwise orientation of current block
8: Calculate lengthwise orientation of previous block
o Calculate cross-product of both orientations

10: if cross-product < 0 then

1L Sum both orientations

12: if magnitude of sum is large then

13: Perform flip-flop {Algorithm 2}

14: else

15: Lock blocks {Algorithm 3}

16: end if

17: else

18: {Normal tipping — No action}

19: end if

20. endif

21: end for

Our flip-flop algorithm works by performing a separate on
the two particles which make up the hinge. To identify the
new particles to hinge on we exclusive-or with 1 (01,) and
combine these particles.

The flip-flop also causes the configuration of ribbons to

change. While this is only cosmetic, it is necessary to en-
hance the realism of the simulation. There are a number of
possible ways to treat the ribbons, but for performance rea-
sons we decided to create all of them and hide those which
are not visible.

Algorithm 2 Code to flip-flop blocks in the Jacob’s ladder
1: Separate currently hinged corners
2. Calculate particle numbers for new hinge {by exclusive-
oring current particle numbers with 012}
3: Combine particles for new hinge
4: Hide and show ribbons as appropriate

To lock two bodies, a further combine on the hinged cor-
ner is performed as this has the action of making the hinged
bodies rigid. Anticipating that the particle will be required
when the hinge is unlocked, it is subsequently recreated so
that there are still ten particles in the two bodies. Finally,
the hinge must be marked as locked so that it can be treated
appropriately.

Algorithm 3 Code to lock hinge in Jacob’s ladder
1: Perform a further combine on the hinged corner {This
has the effect of causing both blocks to become consoli-
dated into the same body}
2. Clone hinged particle {to retain ten particles in new
body, as before}
3: Mark hinge as locked

Unlocking a hinge is performed by detaching the central
particle from one of the bodies using separate to create a new
body. Each of the block’s four remaining particles must also
be separated and combined with the new body. In very rare
circumstances the body which has become unlocked may ac-
tually be locked to a another block and some further manipu-
lation is required to maintain the correct parent body. Finally
the hinge is recreated by combining the corners in question
and then marked as unlocked.

Algorithm 4 Code to unlock hinge in the Jacob’s ladder

1: {Reconstruct two separate bodies as it was prior to the
locking action}
Detach central particle from notional second body
Insert new body into data structure
for all particles to be repointed to second body do
Detach particle from parent body
Repoint to new body
end for
If next body is also locked, repoint it to new parent
Rebuild hinge using combine
Mark hinge as unlocked

=
Qo




6 RESULTS

The first set of results presented in Figure 6 shows screen
shots of the Jacob’s ladder taken at intervals of eight frames.
Although it is difficult to see the subtleties of the mation
from such images, we would like to draw your attention to
subimage A through G. Notice how the third block is pushed
down and then pulled back up over the sequence, in partic-
ular a significant change in position has occurred between E
and F. From subimages G to R we have gradually navigated
down to follow the propagation of the ripple. Subimage N is
of interest as the third block is momentarily unable to tip be-
cause the previous two blocks have locked and their united
motion disrupts it. This behaviour can occasionally be ob-
served in the real toy. Also, notice how the second and third
blocks appear to have become locked in S and T and are then
possibly unlocked by U. The types of subtleties introduced
can only result from the use of a physically based model.
There is no way of merely giving the impression of this sort
of realism.

The next sequence of images show the Jacob’s ladder sim-
ulated within a virtual world. The world contains a model of
the Advanced Interfaces Group laboratory at the University
of Manchester. Our dynamic Jacob’s ladder can be seen to
appear on the monitor of one of the computers in the model
as it is navigated. The results have been generated on a Sil-
icon Graphics Indy, however, our software runs adequately
on a Pentium 75MHz with 32MB RAM running Linux with
GNU MAVERIK and using Mesa 3-D.

7 CONCLUSIONS

Our simulator can be used to achieve a wide range of effects
from flocking to articulated rigid body simulations but we
chose to simulate a Jacob’s ladder because it illustrates two
very important properties of our simulator. Firstly, the solver
is robust so there are no disconcerting anomalies introduced
by it failing to converge.

Secondly, this particular example makes heavy use of our
dynamic restructuring routines. Each flip-flop fundamentally
changes the underlying model. We have only shown this re-
structuring occurring as scripted events but there is no reason
why the user cannot affect such changes. Indeed any interac-
tive breaking or reassembling is possible via these routines.
Any degree of dynamic restructuring can be effected by var-
ious permutations of combines and separates.

Many constraint solvers have been implemented to gen-
erate animation sequences [2, 1], few have been tailored
specifically for virtual reality applications [4, 11] and even
fewer enable scene data to be dynamically restructured.

We have found that our Jacob’s ladder model can be sim-
ulated at interactive frame rates. We do not implement any
collision or contact constraints so blocks can be seen to oc-
casionally pass through one another for a single frame.

A, B

;
;
}

¢
X

\

Figure 6: Jacob’s ladder in action

=



(1]

(2]

[3]
Figure 7: Jacob’s ladder in AIG lab model

[4]

(5]

6]

Figure 8: Jacob’s ladder in AIG lab model [7]

(8]

(9]

[10]

[11]

Figure 9: Jacob’s ladder in AIG lab model

Although the connectivity of blocks in a real Jacob’s lad-
der differs from that in our model and as such the model is
not a faithful representation, our virtual ladder contains all
the subtleties of motion exhibited by the real toy. Finally, the
virtual Jacob’s ladder is as addictive as the real thing.

References

David Baraff. Dynamic simulation of non-penetrating
rigid bodies. PhD thesis, Cornell University, 1992.

Ronen Barzel and Alan Barr. A modelling system
based on dynamic constraints. ACM Computer Graph-
ics, 22(4):179-188, August 1988.

Peter M. Chapman and Derek P.M. Wills. Towards a
unified physical model for virtual environments. In
Proc. 4th UK VR-SIG Conference, Brunel University,
UK., November 1997.

Francgois Faure. Fast iterative refinement of articulated
solid dynamics. To appear in IEEE TVCG, 1999.

T. Fernando and P.M. Dew. Constraint-based inter-
action techniques for supporting a distributed collab-
orative engineering environment. In Proceedings of
the First Workshop on Simulation and Interaction in
Virtual Environments, pages 265-270, lowa City, July
1995.

Mashhuda Glencross. Multi-body simulation in virtual
environments. In Richard Zobel and Dietmar Moeller,
editors, Simulation — Past, Present and Future. 12th
European Simulation Multiconference, pages 590-594,
Manchester, England, June 1998.

Mashhuda Glencross. A Framework for Physically
Based Modelling in Virtual Environments. PhD the-
sis, Department of Computer Science, University of
Manchester, 1999.

R.J. Hubbold, D. Xiao, and S. Gibson. MAVERIK —
the Manchester virtual environment interface kernel. In
Proceedings of the 3rd Eurographics Workshop on Vir-
tual Environments, Monte-Carlo, February 1996.

A. Murta, S. Gibson, T.L.J. Howard, R.J. Hubbold, and
A.J. West. Modelling and rendering for scene of crime
reconstruction: A case study. In Proceedings of Euro-
graphics UK, pages 169-173, Leeds, March 1998.

William H. Press, Saul A. Teukolsky, William T. Vet-
terling, and Brian P. Flannery. Numerical Recipes in C
The Art of Scientific Computing. Cambridge University
Press, Cambridge, second edition, 1992.

Benjamin Wooley. Rules of the game. Per-
sonal Computer World, pages 272-273, May 1999.
htt p: // ww. mat hengi ne. com



Acknowledgements

We would like to thank Dr. Simon Gibson for the AIG lab
model and code.

Contacting the Authors

The authors can be contacted at:

Department of Computer Science
University of Manchester

Oxford Road

Manchester M13 9PL

United Kingdom

+44 161-275 6176
Mashhuda Glencross: glencross@cs.man.ac.uk

Alan Murta: amurta@cs.man.ac.uk



