
A Network Architecture Supporting Consistent Rich
Behaviour in Collaborative Interactive Applications

James Marsh, Mashhuda Glencross, Steve Pettifer, and Roger Hubbold

Abstract— Network architectures for collaborative virtual real-
ity have traditionally been dominated by client–server and peer-
to-peer approaches, with peer-to-peer strategies typically being
favoured where minimising latency is a priority, and client–server
where consistency is key.

With increasingly sophisticated behaviour models, and the
demand for better support for haptics, we argue that neither
approach provides sufficient support for these scenarios and
thus a hybrid architecture is required. We discuss the relative
performance of different distribution strategies in the face of real
network conditions, and illustrate the problems they face.

Finally we present an architecture that successfully meets
many of these challenges, and demonstrate its use in a distributed
virtual prototyping application which supports simultaneous col-
laboration for assembly, maintenance and training applications
utilising haptics.

Index Terms— Virtual reality; Network Architecture and
Design; Haptic I/O; Computer-supported collaborative work;
Computer-supported cooperative work; Simulation, Model-
ing, and Visualization; Client/server; Distributed applications;
Computer-aided design.

I. I NTRODUCTION

As the field of virtual reality matures, our expectations
become increasingly ambitious. Having developed from simple
demonstrators and networked games supporting basic be-
haviour to complex engineering applications in the areas of
training, design, planning and product testing [1], [2], the
support for complex behaviour is ever more important. With
increasing processor speeds and sophisticated general purpose
computation possible on Graphics Processing Units [3]–[5],
the potential for computing such complex behaviour in real-
time (including physical simulation) has greatly improved.

More realistic behaviour, however, brings with it the need
for more intuitive modes of interaction, both in terms of input
devices and the underlying algorithms. For example, with a
number of researchers having demonstrated experimentally
that providing kinaesthetic feedback through the use of haptic
interaction devices has a statistically significant impact upon
task-performance [6]–[11], advanced models for haptic inter-
action are being investigated to provide additional sensory
feedback [12]–[14]. A user interacting with an object via
a haptic device may quite reasonably expect to feel forces
such as friction, or experience the textures of objects in a
way that a mouse-user would not even consider. The extra
computational and architectural cost of providing such an
experience should not be underestimated. In spite of these
extra complexities the scope for combining these technolo-
gies to enable remote collaboration is huge, with particularly
compelling applications in computer aided design, such as

for virtual prototyping and collaborative design reviews [15]–
[17]. Whereas the fundamental techniques have continued
to develop apace, in recent years network technology has
been unable to match their rapid progress. While available
bandwidth has been steadily increasing (with broadband DSL
connections gradually replacing ISDN), high latency (the delay
between the transmission of a message and its reception),
and high jitter (the variation in latency) are still surprisingly
common, and it is these that currently present the greatest
challenge to sophisticated collaborative virtual environments.

There have been many recent proposals for architectures
and frameworks to support haptically-enabled collaborative
applications [18]–[23], however we argue in this paper that
none of them have been flexible enough to support the kind
of rich behaviour that we envisage here.

In this paper we present the results of our experience of
developing such an architecture, beginning by considering
the demands imposed on the system, the network conditions
we experienced, and the considerations required to contend
with them. Specifically, we illustrate our discussion with
reference to a distributed interactive virtual prototyping system
(DIVIPRO), incorporating haptics, geometric constraints and
multi-body simulation, and which has been demonstrated to
work successfully over a wide variety of network conditions.

II. I NTERACTION IN BEHAVIOURALLY RICH

ENVIRONMENTS

The interaction modes adopted by users to achieve shared
objectives in distributed virtual environments vary: at one
extreme each participant may perform essentially independent
tasks in pursuit of a common goal; at the other extreme mul-
tiple users can simultaneously interact with the same model.
In the latter case this could represent either a single physical
object, or form part of a complex multi-body simulation. One
classification [18] of these types of interaction modes defines
collaborative tasks as those in which participants collaborate
by taking turns to achieve a particular shared objective, for
example while performing an assembly sequence for virtual
prototyping purposes; andco-operativetasks as those in which
participants co-operate by simultaneously manipulating the
same entities, such as in a carrying task.

The distinction between these types of activities is partic-
ularly useful when judging the requirements imposed upon
distribution architectures. Similarly, the manner in which the
environment is presented to the users imposes further demands
upon the system. For example, as three-dimensional input
devices and multi-sensory rendering techniques improve, users



2

are more likely to notice the lack of visual and behavioural
fidelity in shared virtual environments. Simple techniques such
as texture and bump mapping used to increase visual fidelity
require a corresponding haptic representation. If a haptic
model feels unlike the user’s expectation of the graphically
displayed object then participants will be unconvinced of the
realism of the environment. Worse still, if haptic feedback
is over-simplified then there is a danger it could reinforce
erroneous behaviour patterns that subsequently need to be ‘un-
learnt’ when applied in the real world.

III. FACTORSAFFECTINGTASK-PERFORMANCE IN

V IRTUAL ENVIRONMENTS

Many studies have examined the effectiveness of collabo-
rative virtual environments and groupware applications. These
have considered a number of factors that affect the extent
to which such environments can be successful, including
network latency, collaboration strategies, rendering fidelity,
and interaction mechanisms.

Users have been shown to be able to adequately perform
tasks in the face of fixed network latencies up to 200ms [24].
However this is highly task dependent, and often attributed to
the users adopting a ‘move and wait’ strategy. Jitter potentially
has a greater impact on the subjects’ ability to co-ordinate
their actions, particularly with regard to predicting the actions
of their collaborators [25].

Changes in interaction strategy to compensate for the effects
of latency and jitter could again reinforce erroneous behaviour.
For example, if during a training application a network glitch
causes a sudden and surprising artifact, the trainee may believe
that they caused it by making an error, even though they were
performing the correct operation.

For the visual display of 3D environments, one of the most
important considerations is maintaining suitably high frame
rates. Typically this is considered to be at least 20–30Hz [1].
Below this level motion appears discontinuous, and object

0 50 100 150 200 250
Additional Latency (ms)

40

30

20

10

0

P
en

et
ra

tio
n 

D
ep

th
 (m

m
)

Fig. 1

THE EFFECT OFCOMMUNICATION LATENCY ON PENETRATION DEPTH

WHEN DROPPING A50G MASS 10CM.

interactions (particularly collisions) may fail to be represented
correctly due to the high inter-frame latency.

The addition of interaction through force feedback has
been shown to improve skills transfer in single user training
applications over the use of VR alone [8], and employing
haptic feedback to support collaboration can considerably
enhance both task-performance and co-presence [6]. However
haptic rendering imposes even greater demands on the system
than visual displays.

An important factor contributing to the correct perception
of a collision with a solid, haptically-rendered surface is the
amount by which the virtual surface can be penetrated. This
is highly dependent on the latency inherent in the feedback
system controlling the haptic device. Latency arises from two
sources: the update rate of the device’s feedback loop, and
communication delays. An update rate of at least 1KHz [26]
is considered to be necessary for solid contacts; below this
rate objects begin to feel ‘spongy’, and if the rate drops too
low, instabilities arise.

To quantify the typical effect of communication latency
on haptic response we performed a simple experiment using
one of our FCS HapticMASTERs [27]. These are 6 degrees-
of-freedom (6 DOF) input, 3 DOF output, haptic interfaces
which operate on an admittance control principle. The device
provides a large workspace determined by the sweep of its
robotic arm, with a maximum vertical extent of 0.4m.

The arm was programmed to repeatedly move to the same
position from which a 50g mass caused it to drop under the
influence of gravity 10cm onto a horizontal virtual plane.
A constant update rate of 1KHz was maintained, however
the force calculation was based on a delayed reading of the
end-effector position and velocity. The maximum penetration
depth for a range of latencies was then plotted (see Figure 1).
Communication latency inherent in driving the device itself
was ignored and assumed to be constant.

While penetration depth will depend on a number of factors,
including surface stiffness and damping properties, force ap-
plied, and impact velocity, in informal experiments we found
that users generally began to report collisions with surfaces
feeling ‘unusual’ when the additional latency reached the
25–30ms range.

IV. A RCHITECTURESSUPPORTINGCOLLABORATION

The primary aim of any architecture designed to enable
collaboration is to provide a consistent and coherent view of
a shared environment or application to each of the connected
users. Ultimately the speed of light imposes a finite upper
bound on how fast information can be communicated across
a network, and in practice real network performance is well
below this level. The impact of this is that regardless of
architecture, two remote users cannot share an instantaneous,
fully-synchronised view of an environment.

Table I and Figure 2 show the result of measuring latency
and jitter on a variety of different network routes between The
University of Manchester and a number of our collaborators.
The results show that the routes differ in performance by one
or two orders of magnitude. Consequently the architectural



3

choices which are appropriate for a local-area network (LAN)
are not necessarily going to apply in the case of typical
wide-area network (WAN), and likewise applications designed
specifically to work over WANs are unlikely to take full
advantage of the faster local environment.

Faced with this challenge, the majority of collaborative
virtual environments adopt one of the two most common
network distribution architectures, client–server or peer-to-
peer [28], with both of these architectures having their own
specific benefits and shortcomings.

A. Client–Server — Increasing Consistency

One of the most straightforward architectures to support
complex behaviours, the client–server approach illustrated in
Figure 4(a), uses a centralised server that runs a simulation
of the virtual environment and communicates relevant state
changes (including positional updates) to all of the attached
clients. These contain a representation of the application, but
do not perform any simulation activities locally; instead, user
interactions are sent directly to the server for processing.
The clients only update their local representations when they
receive a message instructing them to do so.

This has the advantage that it makes simulating rich be-
haviour considerably more straightforward than alternative
architectures. Instead of distributing the simulation itself
across the remote clients, only the outcome needs to be
communicated. The architecture is robust against the effects
of jitter and latency since if update events destined for a
particular client suddenly experience an increased delay, the
effect will be no more serious than interference disrupting a
television programme. The client may temporarily display an
inconsistent view of the world, but as soon as the updates
arrive this is corrected. Similarly, if updates destined for the
server are delayed then events may be applied in a different
order to originally generated. Unlike architectures employing
multiple simulations, in this case all users will experience the
same outcome. In many cases, given that the users have no
other frame of reference, it would be impossible for them to
determine the original chronology. While this may result in
occasional perceptual problems (such as ‘dead men shooting’),
the server will remain in a semantically consistent state.

In addition to the synchronisation benefits, with a single
point of contact, application start-up is simplified, and it
is straightforward to have the environment persist even if
all the clients disconnect. These properties are particularly
advantageous when the time taken to complete a task is high.

The biggest disadvantage of the client–server approach is
that the local view of the environment is only updated after a
round-trip to the server, resulting in additional input latency
for the participants. However it has been argued that this
architecture is the most appropriate to support co-operative
tasks in collaborative virtual environments due to the need for
consistent state [18].

Recall the requirement for visual update rates of at least
20–30Hz. If user input cannot be processed and displayed
at this rate then input could be seen to lag and the users’
perceptions of causal relationships may begin to break down.

What effect this will have is likely to be task dependent, and
experiments disagree with regard to the threshold at which
task-performance is affected.

An analysis of the round-trip latencies of our office LAN,
and the links between The Universities of Manchester and
Bristol, and between The University of Manchester and FCS-
Control Systems in Amsterdam (see Table I) shows that these
network conditions would provide sufficiently high update
rates that a pure client–server is likely to be adequate for
a purely visual display (assuming whatever simulation pro-
cessing was required could be calculated fast enough on the
server). Where the graphs show occasional peaks of latency
higher than 50ms occurring, depending on the task it may
be possible to visually perceive brief glitches in continuous
movement, though the global semantic state of the simulation
would be unaffected. Haptic-rendering on the other hand
demands much higher update rates than visual displays, and
hence only a local LAN is able to provide low enough latency
to make centralising haptic rendering feasible.

B. Peer-to-Peer — Reducing Latency

With a peer-to-peer architecture, peers directly apply a
user’s input to their own simulation of the environment while
simultaneously communicating these events to other peers as
shown in Figure 4(b). This is attractive because it avoids
the additional input latency present with the client–server
approach and hence has proved a popular architecture for a
number of collaborative systems [29]–[32]. For applications
with low synchronisation requirements (such as war games,
viewing scientific datasets or static models, simple carrying
tasks, and primarily social environments) such an architecture
can be reasonably successful, especially over low-latency, low-
jitter connections.

When more complex rich behaviour is involved, however,
synchronisation issues begin to dominate. If simulation states
computed by each peer diverge catastrophically (due to up-
dates either being discarded, arriving in different orders, or
at different times at each peer), in the absence of a server to
arbitrate, correcting the causal inconsistencies that arise poses
a significant challenge.

Most solutions to the problem of ensuring a consistent
ordering of discrete events across a network of machines
have evolved from the concept of ‘logical clocks’ [33]. While
ensuring that events are executed in the same order at all peers,
this particular algorithm is not tolerant of peers failing, and
delayed messages cause all further processing to be delayed
until the missing update is received. These problems have been
addressed within subsequent work on virtual time and time-
warping [34] which allows the simulation to be rolled back to
a consistent state if delayed updates cause nodes to become
in conflict. While these concepts have been suggested for use
in virtual environments [35], [36], it appears the approach has
been used in few real applications. Its main problem is that in
addition to needing a history of simulation state to be stored,
the ability to rapidly move forwards through time in order
to ‘catch up’ to the current time is also required. This either
implies significant spare CPU capacity or is likely to introduce
further latency.



4

0 2000 4000 6000 8000
Received Packets (sequence no.)

0

5

10

15

20
R

ou
nd

-T
ri

p 
Ti

m
e 

(m
s)

0 2000 4000 6000 8000
Lost Packets (sequence no.)

(a) Local LAN

0 2000 4000 6000 8000
Received Packets (sequence no.)

0

25

50

75

100

R
ou

nd
-T

ri
p 

Ti
m

e 
(m

s)

0 2000 4000 6000 8000
Lost Packets (sequence no.)

(b) The University of Bristol, United Kingdom

0 2000 4000 6000 8000
Received Packets (sequence no.)

0

50

100

150

200

R
ou

nd
-T

ri
p 

Ti
m

e 
(m

s)

0 2000 4000 6000 8000
Lost Packets (sequence no.)

(c) FCS, Amsterdam, The Netherlands

0 2000 4000 6000 8000
Received Packets (sequence no.)

0

50

100

150

200

R
ou

nd
-T

ri
p 

Ti
m

e 
(m

s)

0 2000 4000 6000 8000
Lost Packets (sequence no.)

(d) The University of North Carolina, Chapel Hill, USA

0 2000 4000 6000 8000
Received Packets (sequence no.)

0

500

1000

1500

2000

2500

R
ou

nd
-T

ri
p 

Ti
m

e 
(m

s)

0 2000 4000 6000 8000
Lost Packets (sequence no.)

(e) Labein, Bilbao, Spain (afternoon)

0 2000 4000 6000 8000
Received Packets (sequence no.)

0

500

1000

1500

2000

2500

R
ou

nd
-T

ri
p 

Ti
m

e 
(m

s)

0 2000 4000 6000 8000
Lost Packets (sequence no.)

(f) Labein, Bilbao, Spain (night)

Fig. 2

MEASUREDNETWORK PERFORMANCE TOVARIOUS DESTINATIONS FROMTHE UNIVERSITY OF MANCHESTER, UK.



5

TABLE I

RESULTS OFSENDING 8000 PACKETS TO DIFFERENTDESTINATIONS FROMTHE UNIVERSITY OF MANCHESTER, UNITED K INGDOM.

Distance Lost —— Round-Trip Time (ms) —— Mean Round-Trip Typical
Destination (km) Packets Min. Max. Mean Mean Deviation Update Rate (Hz) Hop Count

Office LAN (Switched Ethernet) 0.01 0 0.36 13.2 0.46 0.047 2170 1

The University of Bristol, UK 230.00 0 13.9 88.2 14.3 0.34 69.9 14

FCS, Amsterdam, The Netherlands 496.00 0 20.9 164 27.6 4.54 36.2 18

Labein, Bilbao, Spain (night) 1140.00 3 62.3 663 68.3 4.59 14.6 17

University of North Carolina, USA 6062.00 0 104 106 104 0.038 9.62 18

Labein, Bilbao, Spain (afternoon) 1140.00 68 87 2298 341 136 2.93 17

(a) Constant Low Latency (b) Constant High Latency

(c) Latency and Jitter (d) Latency, Jitter and Packet Loss

Fig. 3

THE EFFECT ONMULTIPLE DISTRIBUTED SIMULATIONS OF DIFFERENTNETWORK CONDITIONS.



6

The most straightforward network conditions for a peer-to-
peer architecture to contend with are shown in Figure 3(a).
With an update interval consistently less than the network
delay, events can be delivered in the same order to all peers,
and with suitable physical time-stamping, updates can be
applied at the same time in all simulations.

Figure 3(b) illustrates the problem where latency is higher
than the interval between successive updates. Where there
is low jitter, adding a delay to the locally generated events
(‘additional local lag’ [37]) can resynchronise event delivery
so that it appears similar to Figure 3(a). This requires all input
events, whether generated locally or remotely, to be delayed
at each peer by an amount equal to the latency of the slowest
network link in the system.

Figure 3(c) shows the effects of jitter. While the solution
of injecting additional local lag might be reasonable under the
conditions experienced in communicating between Manchester
and The University of North Carolina (where there is low jitter
and constant latency), in order to be fully effective, all events
must be delayed by themaximumlatency of the slowest link,
a threshold much greater in the networks shown in Table I
than the mean round-trip time. In the case of the Manchester–
Amsterdam link, the total delay would need to be consistently
82ms, whereas the mean client–server round-trip would only
be 27.6ms. Similarly in the Manchester–Bristol example a
client–server architecture would experience a 14.3ms mean
round-trip, but even the relatively low level of jitter would
require all updates to be slowed to at least 44.1ms when using
the additional local lag approach.

Figure 3(d) shows the problem that occurs when losing
updates which, depending on protocol, may be impossible
to detect. TCP/IP provides a guarantee of delivery, however
lost packets still incur significant additional latency. Moreover
because TCP/IP guarantees the order in which packets are
delivered, following packet loss, subsequent packets in the
stream will be queued until the lost packet is successfully
delivered. UDP on the other hand provides a best-effort
approach, delivering packets in the order in which they arrive
but offers no notification of lost packets. This is particularly
problematic where a single update may make a significant
change in state to the simulation (for example connecting two
objects together or triggering complex predefined behaviour).
Additionally where updates only provide relative changes, the
result of their incremental application may cause significant
divergence.

Many existing peer-to-peer architectures work because of
the relative simplicity of the behaviour they support. Parallel
computation of complex behaviours such as multi-body sim-
ulations is a significant challenge, even to shared memory su-
percomputers, where communications latency is many orders
of magnitude less than that on a LAN [38], [39].

C. Hybrid Architectures — Coping with Jitter and Packet Loss

It can be argued that since network technology exists that
offers a relatively low-latency, low-jitter connection between
the UK and USA (Figure 2(d)) that eventually all networks
will evolve to that level. However, experience has shown that

as capacity increases, applications evolve that utilise the extra
bandwidth, such as Voice Over IP (VOIP), video conferencing
and Network Attached Storage. While it is possible that
increasing support for Quality of Service (QOS) mechanisms
will reduce the problem of jitter at some point hence, it is
likely that for the foreseeable future latency and jitter will
continue to be a significant issue.

The performance of the network link to Labein in the
afternoon shown in Figure 2(e) is typical of a highly congested
network with both significant latency and jitter, and packets
being dropped frequently. The high degree of jitter is likely
to be caused by consecutive packets taking different routes
from sender to receiver in order to avoid congested links, or
by packets experiencing varying queueing times at different
routers depending on other network traffic.

When the router queues get filled, packets are dropped,
explaining why periods of peak latency coincide with packet
loss. This would have a catastrophic effect on the synchro-
nisation of a fully peer-to-peer system. These performance
figures appeared to be characteristic of this particular link
during the working day. However for comparison purposes the
performance of the same link is shown at around midnight on
the same day in Figure 2(f) where it behaves significantly bet-
ter, demonstrating how the performance characteristics directly
depend on network utilisation.

Given the dramatic change in network conditions that
can occur, without quality-of-service guarantees peer-to-peer
architectures do not degrade gracefully enough to support
sophisticated behaviour models. Some of the assembly tasks
we undertook using our virtual prototyping system (described
later) took over an hour for an expert user to perform the
entire procedure. Having the simulation catastrophically fail
due to a sudden surge in network usage would not have been
acceptable.

We have already shown that making peer-to-peer archi-
tectures robust against common levels of jitter introduces so
much additional latency that it reduces the performance of the
average case to well below that of a client–server solution;
therefore if meaningful collaboration is to be successfully
performed over slow and jittery networks, a hybrid solution
must be found.

A third commonly used architecture that attempts to marry
the low-latency advantages of a peer-to-peer network with the
synchronisation benefits of a client–server architecture is to
build a peer-to-peer system but then enforce object-based lock-
ing as illustrated in Figure 4(c) (an architecture occasionally
called token-ring [18]). This eliminates the problem of out-
of-order updates as only one user is able to interact with
a given simulation object at once, however it also prevents
simultaneous co-operation, and offers no way of scaling to
support it.

For many applications this architecture will be sufficient,
providing particularly good support for haptics, however it
enforces rigid turn taking which is often unnatural. (While
in most interactions, such as holding a conversation, social
conventions result in turn-taking, people still expect to be able
to interrupt each other.)

An improvement to this approach would be to provide the



7

(a) Client–Server (b) Peer-to-Peer

(c) Enforced Turn-Taking (Locking) (d) Roaming-Server

Fig. 4

NETWORK ARCHITECTURESSUPPORTINGCOLLABORATION AND CO-OPERATION.

ability to identify and lock specific regions of a peer-to-peer
network in which all connections between peers provide event
delivery characteristics similar to those shown in Figure 3(a).
An architecture similar to this was suggested by Hespanhaet
al. [19].

One problem with architectures such as these, however,
is that it is not always intuitively clear to the users who
is allowed to interact at any one moment in time. This can
result in the ‘shared blanket’ problem where users on the
periphery of a fast network-group are able to collaborate with
all the other members except each other, and so either one
joining the interaction locks out the other, while the rest of
the group appears free to interact at will. Again, while this
is a reasonable architecture for many applications to adopt,
this is an additional restriction on the environment that has no
real-world counterpart.

V. THE ROAMING-SERVER HYBRID ARCHITECTURE

In designing our distribution strategy, we aimed to avoid
the possibility of simulations diverging yet still support low-
latency interaction suitable for simultaneous co-operative hap-
tic tasks. In order to achieve this, we exploit the observation
that client–server architectures are fast enough to perform
haptic rendering on local networks. In addition they perform
more reliably than peer-to-peer architectures over slow or
jittery connections for visual displays, while at the same time
offering better support for complex rich behaviour.

In our architecture we utilise a number of servers, each con-
taining simulation engines, and distributed across the network
of participants. Typically there would be one server located
on each local network as shown in Figure 4(d). One of these
servers is also nominated to manage the administration of the
environment itself and to ensure that logically only one of the
simulation engines can be active at any time.

Initially all of the simulation engines are dormant. Clients
connecting to the system profile the network link to each of
these engines in order to determine their preferred server for
subsequent interactions. When a user begins to manipulate
an object, their client sends a request to the environment to
activate its preferred server. If all the simulation engines are
dormant, their request is granted, and the client is notified
accordingly. All updates now occur between the client and
active simulation engine in an identical manner to a standard
client–server architecture.

If a second user wishes to either collaborate or co-operate
with the first, their client issues a request to the environment
for their preferred server to be made active. In this case
the response returned rejects this demand and informs the
requesting client of the existing active simulation engine.
The client now uses this server in an identical manner to
the previous user. Since both users are interacting with the
same server they are free to interact with the same simulation
entities, however depending on their network location the
second user may suffer greater latency than the first.

The environment maintains a list of actively interacting



8

users. If a short period elapses (two seconds in our imple-
mentation) with none of the users manipulating any entities,
the simulation engines synchronise and the system enters
its dormant state. The environment is now ready to activate
whichever simulation engine is requested by the next user to
interact. If during the two second period someone picks up
or otherwise interacts with an entity then the synchronisation
process is cancelled in order to maintain predictable behaviour.

Assembly sequences of the kind we are addressing here
typically involve a small group of users assembling around
one to two hundred components. In our particular test cases
this takes over an hour to complete. During this time users
frequently make context changes (selecting components, re-
orienting their viewpoint and interacting with their user in-
terface), and often pause to discuss the next stage of the
assembly sequence. It is these natural breaks that afford us
the opportunity to synchronise servers and roam if necessary.

An important benefit of the roaming-server architecture is
that it provides an approach to building interactive applica-
tions that could be used to adapt many existing collaborative
systems, both peer-to-peer and client–server. In our case, we
chose to build our assembly and maintenance application,
on top of our own Deva 3 [40]–[42] system. This offered
the advantage that state migration is already well supported
by the system [42]. However more sophisticated algorithms
for state migration exist, with impressive performance figures
being reported by the authors of the XEN virtual machine
monitor [43].

It is important to note that this architecture avoids imposing
additional programming complexity on the application de-
signer and supports highly-iterative behaviours such as physi-
cal simulations particularly well. (In a peer-to-peer architecture
these can easily diverge through small timing inconsistencies
and rounding errors). While requiring no assumptions to be
made about network protocols, the architecture will always
guarantee that the simulation will be in a globally consistent
state while at the same time adapting to usage patterns and
network conditions.

A. Virtual Assembly and Maintenance Simulation

The DIVIPRO application is a system developed for virtual
assembly and maintenance tasks, enabling collaborative and
co-operative engineering design between geographically dis-
tributed design teams. It supports four distinct types of rich
behaviour: collision detection, geometric constraints, flexible
object simulation, and haptic-feedback. While collision de-
tection enforces a minimal set of constraints on the motion
of entities, most algorithms are unsuitable for simulating
complex assemblies such as hinges and locating pegs in holes.
Therefore geometric constraints are used to enforce these
alignment restrictions. Additionally a form of ‘snap dragging’
model is useful in many virtual environments where spatial
awareness and input devices are limited. Axial and planar
geometric constraints activate based on a threshold relating the
distance between the position and orientation of a component
and potentially suitable axes. When a constraint activates, the
component is ‘snapped’ the short distance to be correctly

0 2000 4000 6000 8000
Update (sequence no.)

0

5

10

15

20

25

30

C
on

st
ra

in
t P

ro
ce

ss
in

g 
Ti

m
e 

(m
s)

Fig. 5

LATENCY INTRODUCEDBY THE SIMULATION ENGINE.

oriented and restricted to only move along the relevant axes
unless a sufficient force is applied to break the constraint.

A large number of prototyping applications require some
representation of flexible pipes and cabling harnesses.
DIVIPRO supports a flexible object model that utilises a simu-
lation specifically designed for simulating flexible pipes [44],
[45]. This treats pipes as multi-body systems of connected
masses and springs, and considers the distribution of mass and
energy through the structure. External forces and environmen-
tal constraints such as collisions act on the body causing the
model to compute a new equilibrium position. The model uses
a closed-form analytical solution, integrating these equations
of motion for the multi-body system by implicit time stepping
methods in conjunction with a Newton-Raphson solver.

The computational complexity of collision detection, ge-
ometric constraint matching, and deformable pipe simulation
varies depending on the geometric structure of the components
being manipulated by the users. The graph shown in Figure 5
records the update latency introduced by the simulation en-
gine for one of the sample assembly tasks, in this case the
assembly of a blood-pressure monitor, part of which is shown
in Figure 6. The model contains a large number of small
parts which require careful assembly in a specific sequence.
The two regions of highest processing time correspond to the
manipulation and docking of complex components constructed
from parametric surfaces including trimmed NURBS, such as
the gear wheel shown near the bottom of Figure 6, which can
potentially match a large number of axial constraints.

B. The Deva 3 Implementation

Deva 3 was originally designed as a client–server virtual
reality architecture supporting a parallel cluster of machines
for simulating the behaviour of the world. Related to this was
the ability to migrate entities between server nodes both for
load balancing purposes and to optimise the communication
latency between interacting entities. As originally envisioned,
all the server nodes were expected to be located physically



9

Fig. 6

THE BLOOD PRESSUREMONITOR TEST CASE.

close to each other on a very fast, high-bandwidth local
network so as to avoid significant synchronisation problems
within the server. Our initial approach was to build on this
existing functionality and configure nodes in the parallel server
to be distributed across the network. Using Deva’s native
load balancing it would be possible to migrate all of the
entities on demand closer to the interacting user (hence the
name ‘roaming-server’). While this was possible for simple
shared environments, the cost of initialising data-structures
for collision detection, and automatically parsing the model’s
boundary representations in order to recognise potential con-
straints, proved too slow to undertake every time the locus of
control changed. The solution was to replicate all simulation
objects at each server node and to toggle the active server each
time the locus of control moved.

C. Exploiting Perception — Object and Subjects

The core of the programming model adopted by Deva is
that of a client–server system: in particular, at any given
time the environment’s semantic state is managed by a single
node in the system, thereby avoiding the possibility of users
seeing divergent behaviour. However the system provides for
a more flexible approach to communicating changes in the
environment to the clients.

Behaviour is characterised as either beingobjective(that is
part of the synchronised, semantic state of the environment), or
subjective(part of what is necessary to best-portray the correct
interpretation of the objective state to the user). This distinc-
tion is similar to differentiating between the world around us,
and our perception of it. Entities in the Deva environment are
defined to have a single ‘object’ that resides on a server such as
an instance of the multi-body simulator in the case of a flexible
pipe. In order to either render or interact with an object,
each client creates a corresponding ‘subject’. The subject is
responsible for the user’s perception of the object: this includes

both haptic and visual rendering, and communicating user
interactions to the object. It is the responsibility of the object to
decide when all the corresponding subjects in the system are to
be updated. Likewise the information sent can be customised
on a per-entity basis since both the object and subject can
contain any arbitrary program code. In the case of the flexible
pipes the object sends a list of control points to the subject
which then extrudes and renders its own representation of
the pipe locally. Both the objects and subjects can choose
whether to use reliable messaging (usually to distribute se-
mantically important events), or unreliable messaging (such as
for streamed updates or unimportant background animation).

The system also implements a number of features to make
the virtual environment more perceptually coherent in the face
of network delays. In order to provide as high a frame rate
as possible for visual displays, and to avoid glitches caused
by jitter, updates can be delayed on arrival by the duration of
the mean latency plus mean jitter. Locally these updates are
then interpolated using cubic curves [46]. This is particularly
suitable for users naturally taking turns while collaborating
over slow or jittery links as it allows the passive observers to
view smooth, accurate motion.

Subjects are also responsible for haptic rendering due to
the requirement for a higher update rate than can be achieved
with a remote server. Each haptic device is connected to a PC
running a real-time daemon operating at 1KHz. This daemon is
responsible for simultaneously applying a small set of physical
constraints (such as preventing the penetration of planes and
enforcing point, axial or planar geometric constraints).

The daemon also streams positional updates back to the
simulation engine. State-related decisions, such as download-
ing and activating constraints in the daemons are still made
by the active simulation engine, however the client’s daemon
enforces a particular constraint until it is instructed otherwise.
This approach also has the added benefit of smoothing out the
jitter caused by the simulation engine taking varying amounts
of processing time depending on model complexity.

No workarounds are going to make simultaneous haptic co-
operation effective where latency and jitter are particularly
high. In this case the best that can be achieved is to disable
haptically-rendered collision response, while continuing to use
the device for high-resolution 3D input. Additionally in our
particular application, the use of automatic geometric con-
straints to help align and orient components reduces the need
for continuous high-resolution collision detection in order to
successfully perform and demonstrate the assembly tasks. We
also confirmed that alternative strategies such as using audio
and visual cues [47], [48] to highlight constraints activating
and collisions occurring were particularly effective when not
using haptics, such as for desktop mouse users.

Given the lack of a human representation in our application,
visual cues also proved effective for mitigating the lack of
common social cues. Even though our test application allowed
users to simultaneously manipulate the same object, they
frequently choseto take turns due, in part, to the difficulty
of knowing what other users were doing at any given time.
(Similar behaviour has been reported in the CSCW literature.
For example, in describing the relative merits of allowing



10

simultaneous access in their text editing system, Elliset
al. report that while users initially interacted in a chaotic
manner, they quickly established social conventions to mediate
interaction resulting in surprisingly few conflicts [49].)

Our users initially attempted to synchronise their actions
via voice communication. After making this observation we
implemented a subtle background colour change when users
were interacting, thereby providing an implicit contextual cue
to enable social turn-taking where desired. This was also
exploited to indicate to advanced users when the server was
able to roam. Figure 7 shows two users collaborating. The
user with a subtle green background (left image) is actively
manipulating a flexible cable and cap into position onto a
fuel injection control box while the participant with the pink
background (right image) is passively viewing the task.

D. The Roaming-Server in Use

Figure 8 shows the total round-trip update latency expe-
rienced by two users performing a collaborative assembly
sequence, separated by a network with similar performance
to that shown in Figure 2(b). (This was simulated using the
Linux ‘netem’ [50] queueing discipline.)

The application architecture is similar to that shown in
Figure 4(d). The graph shows only round-trip times for actual
packets sent, and hence ‘dead-time’, when the users are merely
manipulating their viewpoints, is not shown. Spaces have been
introduced into each individual user’s sequence of packets so
that they are shown correctly aligned to each other. Similarly
the time taken for the simulation engines to synchronise is not
shown (this takes around one to two seconds to complete).

User A begins the assembly sequence, inserting the axles
and cogs of the blood-pressure monitor into its main housing.
This causes their local simulation engine to become active
and they are able to enjoy low-latency interaction. After
completing this part of the assembly, they cease to interact,
thereby relinquishing ownership of the simulation engine. The
simulation engines synchronise their state at this point, and
user B takes over to perform the next part of the sequence
with their local simulation engine becoming active. Having
attached the back panel and encoder wheel, they then pass
control back to user A causing the active simulation engine to
roam back to user A’s local network. User A continues with
their task for the remainder of the period shown, beginning
with attaching the first half of the case. At this point user B
assists user A by moving a component causing an obstruction.
User B is forced to use user A’s simulation engine and thus
experiences a greater round-trip latency. However due to the
local haptic rendering daemon maintaining the haptic update
rate (and hence haptic stability), this communication delay is
still within what we found to be generally acceptable levels
for haptic collision response illustrated in Figure 1.

While this example would work reasonably well with a
client–server configuration, one user would consistently suffer
a slower response. In our architecture users only suffer these
delays during co-operative manipulations. Under any of the
conditions exhibited by the other wide-area networks profiled
in Figure 2 it is unlikely that a client–server approach would

Fig. 7

TWO DIFFERENTUSERSCOLLABORATING ON AN ASSEMBLY TASK.

0 2000 4000 6000 8000
Packet (normalised sequence no.)

0

10

20

30

U
pd

at
e 

R
ou

nd
-T

ri
p 

Ti
m

e 
(m

s)

Local Remote Local Dormant
Server Location

(a) User A

0 2000 4000 6000 8000
Packet (normalised sequence no.)

0

10

20

30

U
pd

at
e 

R
ou

nd
-T

ri
p 

Ti
m

e 
(m

s)

Remote Local Remote Dormant
Server Location

(b) User B

Fig. 8

ROUND-TRIP TIMES AND SERVER LOCATION FROM EACH USER’ S

PERSPECTIVE.



11

provide satisfactory haptic-interaction; however our approach
will continue to support low-latency collaboration through
turn-taking.

VI. CONCLUSION

We have shown how under common network conditions
latency can be extremely problematic for interactive collab-
orative tasks in behaviourally rich environments, with nei-
ther client–server nor peer-to-peer architectures adequately
addressing these issues. Many proposed network architectures
concentrate on reducing latency, frequently preferring to adopt
a peer-to-peer configuration for this purpose.

We measured the latency on a number of network links and
found jitter to be a far more significant problem than the mean
latency, with peak latencies many times the mean value. Con-
sequently we argue that the belief that introducing additional
delays into peer-to-peer systems will increase consistency is
flawed. Consistency in a peer-to-peer system can only reliably
be maintained when the additional latencies far exceed those of
the mean round-trip time a client–server solution experiences.

We have described a hybrid distributed architecture for the
effective management of complex virtual environments that
operate over networks with significant latency and jitter using
a novel roaming-server to maintain consistency. Our system
fully supports haptic interaction, enabling users to feel as well
as see the objects they are manipulating. Recognising that
it would be impossible to meaningfully support simultane-
ous co-operation over networks where latency and jitter are
particularly high, our architecture provides the best possible
experience where a mixture of prevailing network conditions
occur.

Users connected over slow links are not prevented from
interacting simultaneously with each other, however their
experience is likely to be less satisfying than if they chose a
turn-taking strategy. At the same time, other users taking part
in the same session are free to interact simultaneously with
each other where network conditions permit. Most importantly,
if people attempt to co-operate across poor links the system
will not fail or enter an inconsistent state. Similarly at no
point are any participants prevented from interacting with the
environment, instead relying on natural, social conventions for
mediation where desired.

The system was found to work well under a variety of
network conditions spanning the full range of performance
profiles shown in Figure 2 and Table I, both over simulated
and real wide-area networks.

ACKNOWLEDGEMENTS

We would like to gratefully acknowledge the help of all
our collaborators, in particular Teresa Gutierrez at Labein;
Holger Weiss at DLR; Gunter Kadegge at KL Technik; Ernesto
Arenaza at Sener; Bas Ruiter at FCS Control Systems; and
Matt Aranha and Alan Chalmers at The University of Bristol.
This work was funded under the grants EPSRC–GR/M66448
and EU–IST-200-28707.

REFERENCES

[1] F. P. Brooks, Jr, “What’s real about virtual reality,”IEEE Computer
graphics and applications, pp. 16–27, 1999.

[2] S. Jayaram, J. Vance, R. Gadh, U. Jayaram, and H. Srinivasan, “Assess-
ment of VR technology and its applications to engineering problems,”
Computing and Information Science in Engineering, vol. 1, no. 1, pp.
72–83, March 2001.

[3] J. Krüger and R. Westermann, “Linear algebra operators for GPU im-
plementation of numerical algorithms,”ACM Transactions on Graphics
(TOG), vol. 22, no. 3, pp. 908–916, July 2003.

[4] M. J. Harris, W. V. Baxter, T. Scheuermann, and A. Lastra,
“Simulation of cloud dynamics on graphics hardware,” inSIG-
GRAPH/EUROGRAPHICS Workshop On Graphics Hardware, San
Diego, CA, 2003, pp. 92–101.

[5] Y. Liu, X. Liu, and E. Wu, “Real-time 3D fluid simulation on the GPU
with complex obstacles,” inPacific Graphics, October 2004, pp. 247–
256.

[6] C. Basdogan, C.-H. Ho, M. A. Shrinivasan, and M. Slater, “An experi-
mental study on the role of touch in shared virtual environments,”ACM
Transactions on Computer Human Interaction, vol. 7, no. 4, pp. 443–
460, December 2000.

[7] E. L. Sallnaes, K. Rassmus-Groehn, and C. Sjoestroem, “Supporting
presence in collaborative environments by haptic force feedback,”ACM
Transactions on Computer-Human Interaction, vol. 7, no. 4, pp. 461–
476, 2000.

[8] R. J. Adams, D. Klowden, and B. Hannaford, “Virtual training for a
manual assembly task,”Haptics-e, vol. 2, no. 2, October 2001.

[9] I. Oakley, S. Brewster, and P. Gray, “Can you feel the force? an
investigation of haptic collaboration in shared editors,” inEuroHaptics,
2001.

[10] M. O. Ernst and M. S. Banks, “Humans integrate visual and haptic
information in a statistically optimal fashion,”Nature, vol. 415, no. 1,
pp. 429–433, January 2002.

[11] R. Komerska and C. Ware, “Haptic task constraints for 3D interaction,”
in IEEE Symposium on Virtual Reality, 2003.

[12] M. A. Otaduy and M. C. Lin, “Sensation preserving simplification
for haptic rendering,” inACM SIGGRAPH Transactions on Graphics,
vol. 22, San Diego, CA, 2003, pp. 543–553.

[13] M. A. Otaduy, N. Jain, A. Sud, and M. C. Lin, “Haptic rendering
of interaction between textured models,” inSIGGRAPH: Sketches and
Applications, 2004.

[14] J. D. Hwang, M. D. Williams, and G. Niemeyer, “Toward event-based
haptics: Rendering contact using open-loop force pulses,” inTwelveth
International Symposium on Haptic Interfaces for Virtual Environment
and Teleoperator Systems (HAPTICS). IEEE Computer Society, March
2004, pp. 24–31.

[15] J. M. Hollerbach, E. Cohen, and W. Thompson, “Haptic interfacing for
virtual prototying of mechanical CAD designs,” inDETC ASME Design
Engineering Technical Conferences, Sacramento, CA, September 1997,
pp. 14–17.

[16] G. Zachmann and A. Rettig, “Natural and robust interaction in virtual
assembly simulation,” inEighth ISPE International Conference on
Concurrent Engineering: Research and Applications, Anaheim, CA, July
2001.

[17] G. C. Burdea, “Haptic feedback for virtual reality,” inVirtual Reality
and Prototyping Workshop, June 2003.

[18] P. Buttolo, R. Oboe, and B. Hannaford, “Architectures for shared haptic
virtual environments,”Special Issue of Computers and Graphics, 1997.

[19] J. P. Hespanha, M. McLaughlin, G. S. Sukhatme, M. Akbarian, R. Garg,
and W. Zhu, “Haptic collaboration over the internet,” inThe Fifth
PHANTOM Users Group Workshop, 2000.

[20] K. Montgomery, C. Bruyns, J. Brown, S. Sorkin, F. Mazzella,
G. Thonier, A. Tellier, B. Lerman, and A. Menon, “Spring: A general
framework for collaborative, real-time surgical simulation,” inMedicine
Meets Virtual Reality. Amsterdam: IOS Press, 2002.

[21] F. Bogsanyi and M. L. Miller, “Tool and object based synchronization in
collaborative haptics,” inIEEE International Workshop on Haptic Audio
and Visual Environments (HAVE), 2002, pp. 109–113.

[22] X. Shen, F. Bogsanyi, L. Ni, and N. D. Georganas, “A heterogeneous
scalabale architecture for collaborative haptics environments,” inIEEE
International Workshop on Haptic Audio and Visual Environments
(HAVE), September 2003, pp. 113–118.

[23] M. Oliveira, J. Mortensen, J. Jordan, A. Steed, and M. Slater, “Consid-
erations in the design of virtual environment systems: A case study,”
in Second International Conference on Application and Development of
Computer Games, Hong Kong, January 2003.



12

[24] K. S. Park and R. V. Kenyon, “Effects of network characteristics on
human performance in a collaborative virtual environment,” inIEEE
Virtual Reality. IEEE Computer Society, 1999, pp. 104–111.

[25] C. Gutwin, “The effects of network delays on group work in real-time
groupware,” inEuropean Conference on CSCW, Bonn, 2001, pp. 299–
318.

[26] G. C. Burdea,Force and Touch Feedback for Virtual Reality. John
Wiley and Sons, Inc., 1996.

[27] R. Q. van der Linde, P. Lammertse, E. Frederiksen, and B. Ruiter, “The
HapticMaster, a new high-performance haptic interface,” inEurohaptics,
2002, pp. 1–5.

[28] S. Singhal and M. Zyda,Networked Virtual Environments Design and
Implementation. ACM Press SIGGRAPH Series Addison Wesley, 1999.

[29] M. R. Macedonia, M. J. Zyda, D. R. Pratt, P. T. Barham, and S. Zeswitz,
“NPSNET: A network software architecture for large-scale ves,”Pres-
ence Teleoperators and Virtual Environments, vol. 3, no. 4, pp. 265–287,
1994.

[30] S. Benford, J. Bowers, L. E. Fahlén, and C. Greenhalgh, “Managing
mutual awareness in collaborative virtual environments,” inVirtual
Reality Software and Technology, Singapore, 1994, pp. 223–236.

[31] C. Greenhalgh and S. Benford, “MASSIVE: A collaborative virtual
environment for teleconferencing,”ACM Transactions on Computer-
Human Interaction (TOCHI), vol. 2, no. 3, pp. 239–261, September
1995.

[32] O. Hagsand, “Interactive multiuser VEs in the DIVE system,”IEEE
Multimedia, vol. 3, no. 1, pp. 30–39, 1996.

[33] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,”Communications of the ACM, vol. 21, no. 7, pp. 558–565, July
1978.

[34] D. R. Jefferson, “Virtual time,”ACM Transactions on Programming
Languages and Systems, vol. 7, no. 3, pp. 404–425, 1985.

[35] M. Mauve, J. Vogel, V. Hilt, and W. Effelsberg, “Local-lag and timewarp:
Providing consistency for replicated continuous applications,”IEEE
Transactions on Multimedia, vol. 6, no. 1, pp. 47–57, February 2004.

[36] B. Mirtich, “Timewarp rigid body simulation,” inSIGGRAPH Computer
Graphics, New Orleans, LA, 2000, pp. 193–200.

[37] M. Mauve, “Consistency in replicated continuous interactive media,” in
ACM Conference on Computer Supported Cooperative Work (CSCW),
Philadelphia, PA, December 2000, pp. 181–190.

[38] R. Cozot, “From multibody systems modeling to distributed real-time
simulation,” in Twenty Nineth Annual Simulation Symposium, New
Orleans, LA, 1996, pp. 234–241.

[39] J. G. Cleary, M. Pearson, and H. Kinawi, “The architecture of an op-
timistic CPU: the WarpEngine,” inTwenty-Eighth Hawaii International
Conference on System Sciences, vol. 1, Wailea, HI, January 1995, pp.
163–172.

[40] S. R. Pettifer, “An operating environment for large scale virtual reality,”
Ph.D. dissertation, The University of Manchester, 1999.

[41] S. Pettifer, J. Cook, J. Marsh, and A. West, “DEVA3: Architecture for
a large-scale distributed virtual reality system,” inACM Symposium on
Virtual Reality Software and Technology, Seoul, Korea, 2000, pp. 33–40.

[42] J. Marsh, “A software architecture for interactive multiuser visualisa-
tion,” Ph.D. dissertation, The University of Manchester, 2002.

[43] C. Clark, K. Fraser, S. Hand, J. G. Hanseny, E. July, C. Limpach,
I. Pratt, and A. Wareld, “Live migration of virtual machines,” in2nd
Symposium on Networked Systems Design and Implementation, Boston,
Massachusetts, 2005.

[44] H. Weiß, “Dynamics of geometrically nonlinear rods: I. mechanical
models and equations of motion,”Nonlinear Dynamics, vol. 30, pp.
357–381, 2002.

[45] ——, “Dynamics of geometrically nonlinear rods: II. mechanical models
and equations of motion,”Nonlinear Dynamics, vol. 30, pp. 383–415,
2002.

[46] J. Marsh, S. Pettifer, and A. West, “A technique for maintaining conti-
nuity of experience in networked virtual environments,” inUKVRSIG,
Sept. 1999.

[47] M. Fraser, T. Glover, I. Vaghi, S. Benford, C. Greenhalgh, J. Hind-
marsh, and C. Heath, “Collaborative virtual environments,” inThird
International Conference on Collaborative Virtual Environments, San
Francisco, CA, 2000, pp. 29–37.

[48] R. Sekuler, A. B. Sekuler, and R. Lau, “Sound alters visual motion
perception.”Nature, vol. 385, p. 308, January 1997.

[49] C. A. Ellis, S. J. Gibbs, and G. Rein, “Groupware: Some issues and
experiences,”Communications of the ACM, vol. 34, no. 1, pp. 39–58,
January 1991.

[50] S. Hemminger, “Network emulator,” Online Document, March 2005,
〈http://developer.osdl.org/shemminger/netem/〉.

James Marsh obtained a first class honours BSc.
degree in computer science in 1997, an MRes. in
Informatics in 1999, and a PhD in 2003, studying
software architectures for collaborative visualisa-
tion. He is a post-doctoral research associate in
the Advanced Interfaces Group at The University
of Manchester, United Kingdom. His main research
interests are in the areas of collaborative virtual
environments, distributed systems, and interactive
scientific visualisation. He can be contacted via
email at: james.marsh@manchester.ac.uk.

Mashhuda Glencrossobtained her first degree in
polymer science in 1992, her MSc. in computer sci-
ence in 1994, and PhD in 2000, studying interactive
physically-based modelling. She is a post-doctoral
research associate in the Advanced Interfaces Group
at The University of Manchester, United Kingdom.
Her research interests span the areas of physically-
based modelling, collaborative virtual environments
and haptics. She can be contacted via email at:
mashhuda.glencross@manchester.ac.uk.

Steve Pettifer is a lecturer in the School of Com-
puter Science at The University of Manchester. His
PhD was awarded on the subject of distributed
virtual reality in 1999. His research interests in-
clude collaborative systems, abstract and scientific
visualisation, human computer interaction and dis-
tributed computing. He can be contacted via email
at: steve.pettifer@manchester.ac.uk.

Roger Hubbold is Professor of Virtual Environ-
ments in The School of Computer Science at The
University of Manchester, where he heads the Ad-
vanced Interfaces Group. He holds a first class
BSc. in Engineering (1967) and a PhD. in Com-
puter Graphics (1971). His research interests include
collaborative virtual environments, haptics, visual-
isation and virtual environment software architec-
tures and algorithms, computer vision techniques
for unencumbered interaction, and construction of
virtual environments from images and video. He has

published over 70 peer-reviewed papers and books in this field. He is a Fellow
of Eurographics and an Associate member of IEEE and ACM. He can be
contacted via email at: roger.hubbold@manchester.ac.uk.

http://developer.osdl.org/shemminger/netem/

	Introduction
	Interaction in Behaviourally Rich Environments
	Factors Affecting Task-Performance in Virtual Environments
	Architectures Supporting Collaboration
	Client-Server
	Peer-to-Peer
	Hybrid Architectures

	The Roaming-Server Hybrid Architecture
	Virtual Assembly and Maintenance Simulation
	The Deva3 Implementation
	Exploiting Perception: Object and Subjects
	The Roaming-Server in Use

	Conclusion
	References
	Biographies
	James Marsh
	Mashhuda Glencross
	Steve Pettifer
	Roger Hubbold


