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Abstract

A framework for physically based modelling in virtual reality (VR) is introduced
in this thesis. Currently many VR walk through demonstrations exist and the
majority of these are static, containing limited interaction with objects. Sim-
ulating virtual world behaviour using real world physics is a worthy cause as it
formalises a method for specifying consistent and plausible motion of objects. The
problem with physically based models is that in general they are computationally
intensive.

However, advances in the performance of desktop computers are making VR
widely attainable. Modern desktop computer processors are faster than those
present in graphics workstations used for research only three to five years ago, thus
realising the prospect of physically based modelling in VR. This is not a trivial
matter as most of the processor’s power still needs to be devoted to rendering, so
simulation computations must only use a small percentage.

In this thesis it is argued that the proposed framework provides a flexible
and unified interface for physically based modelling in VR and addresses issues
related to user interaction with such models. To this end the framework contains
a general purpose simulator capable of dynamically restructuring scene graphs to
support a mechanism for users to manipulate models, and a VR kernel. Both of
these are under the control of a high level scripting language. The relative merits

of this approach are demonstrated through a variety of case studies.
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Chapter 1

Introduction

his thesis describes a proposed framework for physically based modelling in
Tvirtual reality (VR). In order to model and simulate flexible or rigid objects
with which a user can interact, a number of core concepts from physics need to be
implemented, often specifically for a given application. The aims of this thesis are
to identify the types of physically based models required by examining literature
within the subject of animation in conjunction with the types of models currently
implemented in VR; to propose a novel framework for general physically based
modelling in VR, and finally to implement a prototype middleware system which
adheres to this framework as a proof of concept.

In our implementation there is an emphasis on simulations in which physi-
cal models can be dynamically restructured at runtime such that some of their
physical characteristics, for example mass and shape, are altered. This approach
has benefits in two main areas; firstly it provides a paradigm for interaction with
physical models by specifying a clear interface through which a model’s structure
can be modified, and secondly a means for complexity management of simulations
by restructuring models such that the amount of complex computations required
to simulate them is minimised. Events which induce such changes can be invoked

interactively by the user or choreographed in a program. It is attractive to add

17



CHAPTER 1. INTRODUCTION 18

complex behaviour to virtual environments, since it provides a richness in the
types of user interaction possible with a computer generated model.

To set the scene, we present a clear and motivated statement of the problem to
be solved. This is followed by a discussion of computer animation, virtual reality
and physically based modelling in VR to set the context of this work within the
subject of computer graphics. Subsequently, the goals of the research, a proposed
solution to the problem, and the novel contributions made to knowledge are
described. Finally a brief overview of the structure of this thesis and a summary

conclude this chapter.

1.1 Problem statement

Virtual environments (VE), that is computer generated three dimensional worlds,
tend to be static environments and there can often be few stimuli capable of keep-
ing users interest for significant periods of time. Many VR applications, systems
that create a real-time visual, audio and possibly haptic experience [Vin98|, may
present users with the opportunity to walk through an environment [MGH™98],
pick up and put down objects, and possibly open and close doors. Often this type
of interaction is event driven, the user may click a mouse button which invokes
a script to animate the action of opening a door. Limited direct manipulation
of such models may also be allowed often taking the form of rotating or moving
an object. Simplistic interaction paradigms of this kind restrict the type of user
participation possible because the VR system is activating the behaviour rather
than it being an integral part of the world. In general, a user cannot participate
in an interaction with complex entities within the world, such as a system of
pulleys, ropes or manipulate deformable materials.

The current state of the art systems enabling physically based modelling
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in VR are typically developed from animation systems, and much research ef-
fort has been expended in improving the performance of physical simulator en-
gines [Fau99, KSZB95, KSB|. For example, rigid or flexible body simulation tech-
niques may be implemented for specific applications such as VR surgery [HA95,
Wat99], military simulation [ZPF*93] or entertainment [Col98, W0099].

A survey of the literature and software libraries available for physically based
modelling in VR reveals there is a lack of middleware systems which provide
enough core functionality for applications developers to build suitable systems.
In particular many toolkits such as MR [MRT] and MEME [MEM] only enable
physical behaviour to be attached to objects via small self contained scripts.
Physical laws are not an integral part of the environment.

At a high level, there are two issues which can be considered to be required to
support physically based modelling in VR. Firstly, a simulator technology capable
of real time computation. Secondly support for the key functionality necessary for
VR such as navigation, input/output to and from VR peripherals and managing
the complexity of large models. Traditionally these two areas are considered
independently of each other due to the different emphasis of the subject domains
and each area has its own unique set of problems which still need to be solved.

This thesis addresses the issue of supporting both simulator and VR services
through a single application programming interface which is both extensible and
customisable. Furthermore the issues of user interaction with physical simulations
and management of complexity of simulations are also addressed.

To provide the reader with a background of the subject areas this objective
covers we examine the history and use of physically based modelling in animation
in the following section. Context and motivation for this type of modelling is
described with its relevance to the field of animation. The discussion then leads on

to a brief history of VR since this is the subject domain within which this research
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is placed. An impression of some of the problems that have to be considered in
order to adapt animation research for VR is imparted. Finally an overview of
the state of the art in physically based modelling in VR is presented in order to

convey the problems associated with current approaches.

1.2 Animation techniques

The fantastic animated films for which Walt Disney is famous, still charm adults
and children world-wide. Disney’s first full length animated feature film was
“Snow White and the Seven Dwarfs” [Dis37] and proved to be more successful
than he himself had ever imagined. Originally, it was intended to be a one-off, but
it was to become one of many spectacular animated films. However, making Snow
White come alive involved much painstaking work. Firstly, the images deemed
to be the most important key frames were drawn by skilled artists. Then artists
called “inbetweeners” drew the images between the key-frames to complete the
animation sequences, and finally, all these frames were combined to produce the
film. It would clearly have been more convenient to automate some of this effort
and animate Snow White by computer.

However, computer animation is by no means trivial. For example Lucasfilm’s
“The Adventures of Andre and Wally B”, had over 700 model parameters that
were hand animated via key-frame interpolation [Bar92b]. More recently, the
first fully computer animated feature film “Toy Story” took four years [LD95]
to complete, and it required over ten thousand lines of code to animate the lead
character Woody. The characters were represented as three dimensional models
within the world and the animators were able to achieve shading and lighting
effects that could not have been achieved using traditional animation techniques.

Early computer animation systems attempted to automate inbetweening using

splines [WW92]. Skilled animators were still required to produce the key frames,
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but now they required additional skills to be able to specify animation sequences,
usually in some scripting language. This was not a desirable situation as it is
unintuitive and difficult to animate anything remotely complex. Consequently
much of the current research in animation has focused on tools which enable the
animator to interactively specify at a high level the path of a particular motion
sequence and more importantly the rules which govern it. Thereby the animator
is relieved of the burden of dictating the detailed motion.

It is useful to compute the motion of an object using physical rules as the
animator then has the freedom to try various sequences, none of which will violate
fundamental physical behaviour. For example, in a traditional animation system a
sequence of a tennis ball being thrown to the ground and bouncing back required a
significant amount of data to be specified explicitly and carefully by the animator.
However, using physical rules only a few parameters need specifying from which
the path for the sequence can be computed and later used by the computer
program responsible for generating the final images. Such physically based motion
generation used to lie purely within the domain of simulation, but is now widely
used in animation.

Many researchers have investigated interactive, physically based simulation
for animation purposes [Gas92, Ove9l, Ove94, WW90|, and many of these ap-
proaches have been successful in the limited context of rigid body animation.
Such techniques have been developed to help the animator intuitively produce
animation sequences for use in the entertainment industry. They are responsive
because animators want to see the results of changes to scenes instantaneously.
These particular animation algorithms have similar frame rate performance re-
quirements to VR systems but they do not necessarily have to be as robust or as
detailed. An animator has the luxury of being able to regenerate frames which

do not appear to be correct because the objective is to produce only one smooth
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recording.

Aside from the consistency and interactivity concepts described earlier, VR
systems differ from interactive animation in that they have differing end require-
ments. Animation systems are used to produce one recording of a given chore-
ographed motion sequence which may be rendered in a more pleasing fashion
later. Contrast this with VR systems which are real time interactive environ-
ments in which the user can have a profound effect on a simulation while a min-
imum level of graphical detail is maintained. This means that a general purpose
physically based VR system has to be more robust than an interactive animation
system. Bearing this point in mind, ideas developed for physically based interac-
tive animation can still be adapted for use in VEs. To clarify the motivation and
introduce context for the subject of physically based modelling in VR we outline

in the following section the history and development of the subject.

1.3 The advent of virtual reality

The term virtual reality (also sometimes known as alternate realities, immer-
sive environments or synthetic environments) is used to describe an interactive,
three dimensional computer generated environment in which the user can be-
come psychologically immersed, leading to a sense of involvement (presence). The
definition of immersive experiences encompasses a wide range of human experi-
ences from dreaming to being completely absorbed in a game like Tetris [GPP86].
Within the context of these experiences the sense of virtual presence may exist in
varying degrees. While the factors that contribute to immersive experiences, in a
VR context, are still not clearly understood, consistent behaviour is known to be
important. Humans learn from observation [Ban86|, and in doing so, build up a
subconscious model of how the world around them works and how they interact

with objects in it.
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Research in the subject of VR can be divided into two distinct categories;
firstly development of hardware and secondly software engineering. In the area of
VR hardware much of the research has been directed by the work of Ivan E. Suther-
land. In his quest for the sensation of being immersed in a VE Sutherland built
the first Head Mounted Display (HMD) in the 1960s, using miniature cathode
ray tubes as displays and mechanical links to relay the position and orientation
of the head [Sut65]. Someone wearing this display would have found it to be very
heavy and cumbersome. The Sutherland HMD started a boom of investigations
into this technology and his work may have directed research into VR displays for
thirty years. Although current HMDs are technologically far more sophisticated,
the principle is the same as the original Sutherland version.

On the other hand in the field of VR software engineering, development has
been comparatively slow and this opinion is supported by researchers such as
Zyda et al. [ZPF193] who propose a set of core requirements for VR software.
In many current applications users can affect a VE by manipulating objects to
achieve some simple objective, for example, fitting together two pieces of “virtual
Lego™” [Guv99]. It is often difficult to predict what the user might choose to
do to an object, so in general limited forms of manipulation are enforced. For
more general modes of interaction with complex objects a physically based model
may be required. Since these types of models are generally computationally
expensive, few have yet been implemented in VR systems. Relevant VR systems
are described later in §3.2.2.

Complex manipulation of objects can contribute significantly to the realism
of a VE. However, very few systems exist which enable a user to pull, deform or
interact with objects in such a way that some of their physical characteristics are
temporarily or permanently altered. Greatly enhancing the level of interaction

possible in VR can have a significant impact on the sense of presence that a user
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may experience while inhabiting a virtual world.

To simulate real world behaviour requires a model representing the rules gov-
erning an object’s reaction to manipulation. For example if we drop a cup onto
the floor we might expect it to smash. How do we simulate the number of pieces
the cup breaks into? How does one work out the time taken for the cup to travel
the distance from where it was released to the floor? How should the impact
of the cup with the floor be identified, and characterised? Will the cup bounce
when it hits the floor? Is the floor hard or soft? The list of questions that can be
asked about a simple everyday situation, indicates just how complex the problem
of describing behaviour of virtual objects can be.

An intuitive method for modelling the behaviour of virtual counterparts to
real world objects is to simulate the laws of real world physics. This opinion
is supported in a survey by Logan et al. [LWA94|. Most observable real world
behaviour can be explained using Newtonian physics, the branch of physics de-
scribing the mechanics of observable motion. It stands to reason that the same
physics based models could be used to compute behaviour of virtual counter-
parts. Unfortunately the situation is not so simple, and often there still has to
be a tradeoff between performance and the fidelity of a simulation.

The value of fast consistent modelling in a VR system is timely, especially with
the significant developments in computer hardware. More powerful computers are
being made available to the home market so it appears likely that the future will
bring VR simulations in which people act and affect the outcome, in their own
homes for work and leisure. Computationally intensive physical models can now
realistically be used in VR applications, though many of these models are still
too complex for simulations to be carried out on desktop computers. In the
following section a number of current approaches are described together with

their limitations.
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1.4 Physically based modelling in VR

The core mathematics for physically based modelling has been around since Isaac
Newton published his laws of motion [New86] and his ideas have been exploited in
simulation, engineering and visualisation. An explosion of interest in the field of
computer animation occurred in late 1980s. Traditionally this type of computa-
tion has been carried out as batch jobs on supercomputers due to the complexity
of the computations involved.

In recent years however, physically based modelling in VR has gained mo-
mentum and a number or techniques have been successfully used in applications
ranging from VR surgery and crash simulations to entertainment. Currently
many physically based models are only able to compute either rigid object mo-
tion or deformation of soft objects. Ideally, users would expect to find both these
types of behaviours but the few VR systems that have evolved reflect this dis-
parity of models so material behaviours are simulated only in limited contexts.
For instance, some researchers have tried to solve the problem of rigid body sim-
ulation in VEs [TJ, KSZB95, KSB] and others have focused on the problem of
flexible body simulation [LWA94, HA95, Nab]. A problem with many of these
applications is that they require implementation of core physics and simulator
technologies from scratch.

A number of solutions have been put forward in recent years. Chapman and
Wills present a unified approach to physically based modelling in VR [CW97,
CW98]. A range of performance critical simulator libraries is also currently avail-
able or under development such as MathEngine [Wo099] and Tabule [Fau99] but
in general these are implemented from an animation or physics perspective rather
than a VR standpoint. As such the focus of research has largely rested on im-
proving the performance of simulators which use techniques commonly found in

animation [Fau99, Gas92, Ove91, Ove94]. The majority of these techniques are
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not completely robust, meaning that the simulator may occasionally be unable
to compute motion for the specified conditions. Furthermore the MathEngine
library and Tabule currently have little VR support as they are essentially simu-
lator libraries.

Consequently, the differences between interactive animation and simulation
in VR have received little attention. VR differs from interactive animation in
two very important and highly coupled ways: consistency and interactivity. By
consistency we mean both a consistent world model and a consistent frame rate.
Interactivity refers to both performance (frame rate) and complex user interac-
tion with the model. These concepts are tightly bound because the provision of
a consistent world model relates to the ability to provide complex interaction,
while performance and consistent frame rate are also related. The danger of cer-
tain frames taking longer to compute than others is especially relevant in VR
simulation. Hence, a simulator implemented for VR has to be able to compute
results consistently quickly and be robust. This is a difficult task because of the
very nature of physically based modelling techniques. Therefore a solid motiva-
tion exists for reducing the complexity of simulations to make the problem of
computing complex physical behaviour more manageable for VR.

Moreover, few general purpose languages for complex scene description exist
in current VR libraries or toolkits. Applications that use physical models in VR,
due to their restricted scope, tend to use hard-coded underlying models which lack
generality. Many programs are written to demonstrate a particular idea and thus
are written at a relatively low level. Consequently, the programmer usually has to
have a solid background in physics in order to implement a simulation usually in
a language such as C or C++. A VR system for physically based modelling ideally
requires a flexible and powerful means of describing a broad class of simulations

for a wide variety of applications. Now that the context of the work described in
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this thesis has been established as physically based modelling in VR, it is possible

to give an overview of the nature of the proposed solution.

1.5 Proposed solution

In this thesis we advocate the use of a middleware framework of components
for the development of applications which incorporate physically based modelling
in VR. For now it is best to think of components as isolated “black box” parts
of a software system responsible for providing a given functionality through a
defined interface. Relevant concepts and motivation for this choice is detailed
in Chapter three but briefly the philosophy of building a large software system
by combining independent parts has many benefits. In particular, this type of
framework is especially extensible, customisable and robust; this statement will
be elaborated upon later in this thesis.

Furthermore management of the complexity of simulations is advocated in or-
der to maintain robustness and real time interactive performance of the simulator
engine. Consequently, the fidelity of simulations may be compromised in favour
of performance. For this reason the aim is limited to computation of plausible
motion only, and this is defined as being that motion which the average user will
believe to be sufficiently accurate for a simulation to be judged correct. However,
if the computational power is available, simulations may be computed to greater
fidelity.

The specific implementation described in this thesis to illustrate the frame-
work was developed using a high level scripting language (Perl) and the systems
programming language C++. However there is nothing inherent in our approach
which obliges us to use these particular languages, and any suitable alternatives
with matching functionality would suffice. Moreover the implementation is a pro-

totype developed as a proof of concept rather than a full product, and as such it
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is not suitable for release to developers in general.
This thesis makes contributions in two main areas; management of complexity
of simulations and a proposed architecture for a component based approach to

physically based modelling in VR. More specifically, novel contributions include:

e First, a framework for physically based modelling in VR is proposed as
a result of investigating the literature in the subject from which the core
functionality required was identified. This framework is novel because of
the architecture adopted and the combination of functionality supported

through a single full and complete development language.

e Second, a method for dynamic restructuring of scenes supported by the
simulator engine implemented for the framework. Dynamic restructuring is
novel because of the way in which the scene graph is modified and analysed
on the fly enabling the problem to be reconstructed for the simulator engine
to solve. This approach provides a means for managing the complexity
of simulations and a philosophy for user interaction and manipulation of

physical models.

e Third, the concept of articulate domains is introduced, which relates to
managing the complexity of physical simulations. This partitions the model

into independent sub-problems which can be solved in isolation.

e Fourth, the framework’s flexibility supports ad-hoc modelling within a phys-
ical context. The developer is not restricted by the need to conduct entire
simulations to a specific fidelity or level of detail. This is novel because
the simulator model is treated as an abstract representation of the virtual
object and so can be as simple or as complex as desired, and this represen-
tation may vary as the simulation proceeds or as a result of user interaction.

This means that a simulation can be as simple or as simulator intensive as
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desired. The framework requires some conventions to be followed by the

developer but are not intended to be restrictive.

e Finally, the use of general purpose physically based modelling in a novel
context within a VE, which adds a uniqueness to the immersive experience
due to the wide range of systems which can potentially be simulated and

manipulated.

Now that these contributions have been described it is appropriate to address
the question of the scope of the work described in this thesis. The scope of the
framework is physically based modelling of articulated rigid body and particle
based models in VR. The simulator implemented for use in the prototype frame-
work may be replaced as long as the proviso of using particle dynamics (models
based on point masses which are described in significant detail in §2.6 p. 49)is
not violated. Potentially any appropriate simulator techniques or VR libraries
can be incorporated into the framework.

The scope of the simulator engine implementation on the other hand has
been limited to plausible motion computation. For this reason it can be argued
that the simulator lends itself more to entertainment applications development
and the case studies shown in Chapter six are chosen from within this domain.
However, this is a consequence of implementation of specific case studies from the
animation industry for comparison rather than a specific bias inherent in the sim-
ulator. Many serious applications can benefit from plausible motion computation
as long as the simulation is used to provide a visual impression of realistic be-
haviour rather than detailed analysis of a particular phenomenon. For example,
the realism of a VR walk-through of a large offshore installation can significantly
benefit from simulation of ropes, pulleys or helicopters landing and taking off

from helipads.
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1.6 Thesis structure

Each chapter contains an introduction and summary, and an overview of the topic

covered in each is listed here.

Chapter 2 discusses some fundamental concepts which the reader is invited to

study before proceeding onto following chapters.

Chapter 3 discusses concepts relating to component frameworks and program-
ming language choices to motivate the approach adopted for the prototype

implementation of the framework (called Iota).

Chapter 4 describes implementation of the components which collectively form

the Iota framework.

Chapter 5 illustrates the power and flexibility of the simulator and shows how

it has been used in a number of different VR examples.
Chapter 6 presents suggestions for further work and concludes the thesis.

Appendix A contains miscellaneous algorithms developed during the course of

the research described in this thesis.

Appendix B provides a background to the fundamentals of C and Perl call-
backs.

Appendix C contains derivations for fundamental equations, together with a
tutorial on the Newton-Raphson method for solving non-linear simultaneous

equations.
Appendix D provides details on how C and C++ can be integrated with Perl.

Appendix E shows some simple examples of user scripts.
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Appendix F contains comments regarding each case study from a sample of

fifteen volunteers.

1.7 Summary

In this chapter we have presented the topics of animation, VR and physically
based modelling in VR to set the context and illustrate the foundations for the
ideas presented in this thesis. We show that there is a need to provide complex
behaviour in VR to make environments more interesting and realistic. Anima-
tion systems use physically based models but their application in VR has been
limited due to the performance demands imposed in such systems. Some of these
approaches could be adapted for use in VR as long as the research is directed by
VR requirements from the start and related issues of consistency, interactivity
and generality are properly considered. Current VR systems tend to execute self
contained scripts to activate specific event driven behaviour in a narrow context.
This paradigm does not allow for much complex interaction with models. We
suggest an alternative where the simulation environment drives the VR and the
physical laws are an integral part of the application.

Furthermore we have indicated a need for a flexible framework within which
to implement applications involving physically based simulations in VR. The
components of this framework and motivation for them will be described during

the course of this thesis.



Chapter 2

Physically based modelling

his chapter presents some of the laws, theorems and concepts which are
Trelevant to forthcoming chapters. An elementary knowledge of terms and
quantities is assumed. If the reader is familiar with basic Newtonian physics then
it is possible to proceed directly to §2.5 where computer simulation of motion
is discussed. Newtonian physics is the basis for all real-world behaviour, leaving
aside situations such as relativistic or quantum level behaviour. For the purposes
of simulation in computer graphics these extremes are rarely approached.

There are many types of models used in computer graphics, their nature
depending on the application domain: some are accurate descriptions of real
textbook physics, while other models are very loosely based on mathematical
or physical models. This diversity of models encountered in computer graphics
exists because realistic models are often too computationally intensive for inter-
active systems. Therefore, researchers often have to be inventive and develop
models which produce plausible rather than physically accurate behaviour. For
example, computational fluid dynamics models used to visualise fluid flow have
to be accurate since they are often used in analysis and design of machinery. On
the other hand, a distributed behavioural model for simulating flocking in ani-

mals [Rey87] only has to produce an overall impression that is visually appealing

32
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and believable.

Rendering models also range from being highly physically based to being
relatively ad-hoc. An example of a physically based atmospheric mirage model
is presented by Glencross [GH97], where the emphasis is on realistic simulation
of mirage phenomena. At the other end of the spectrum, a completely ad-hoc
model to superficially render a rainbow is presented by Musgrave [Mus89].

The term “physically based modelling” has been used in computer graphics
to represent any model which has an underlying mathematical model derived
from physics. There is an inherent appeal in using established physical models
within computer graphics because they are well understood and many have been

successfully used in animation and simulation.

2.1 Newton’s laws of motion

Newton’s laws of motion and gravitation are the most important and fundamental
laws in the subjects of mechanics and classical physics [New86]. It is these laws,
proposed over 300 years ago, that have led to an understanding of the physical
world without which developments such as space travel would never have been a
possibility [Gri87].

Whilst Newton’s ideas have remained the foundation of classical physics, they
were later extended to encompass near-light speed travel and atomic-level be-
haviour by Einstein and others, bringing us towards modern-day physics. We do
not concern ourselves with these extreme cases as they are beyond the scope of
our work because the real world is observably Newtonian, so this is sufficient for
simulating the behaviour of everyday objects in a virtual world. However other
researchers have considered a variety of different approaches to computing mo-
tion; which are significantly different but each still based on the same core physics.

For example recent work at NEC in Japan [Col98] used Newton’s equations to
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control the motion of molecules’ nuclei and supplemented this with Schrodinger’s
equations to understand the motion of electrons as a reaction progresses whilst
temperature and pressure vary.

The level of scientific growth which stemmed directly from Newton’s work is
nevertheless still very impressive. His view of the physical world is invaluable
in construction engineering for analysing systems of forces on bodies. Buildings
have to be designed with proper consideration of the forces they will have to
withstand otherwise the consequences can be very severe. The classic construc-
tion engineering disaster at Tacoma Narrows, where the wind caused a bridge to
oscillate at its resonant frequency, serves as a potent reminder to engineers of the
value of analysing forces on materials used in construction. Newton’s three laws

of motion may be stated as follows [SB90]:

I. A particle remains at rest or continues to move in a straight line at

constant velocity if there is no unbalanced force acting on it.

IT. The rate of change of the momentum of a particle acted upon by an
unbalanced force is proportional to the magnitude of the force and is

in the direction of the force.

ITI. To the action of every force there is an equal and opposite (force)

reaction.

These laws are discussed further in the following sections. There are two distinct
types of motion: linear and rotational motion and they are presented separately
for various configurations of point masses, otherwise known as particles. In the
real world these two types of motion are rarely found in isolation as moving
objects are usually subject to some combination of both. However in order to

understand them it is simpler to consider each in isolation.



CHAPTER 2. PHYSICALLY BASED MODELLING 35

2.2 Action of force on a particle

When a particle at rest is subjected to an unbalanced force it begins to move in
the direction in which it is compelled to move, due to the force being exerted on
it. If the force is exerted by an attractor then it has the action of pulling the
particle towards it. If the particle is subject to a repelling force then it will be

pushed away from the repellor.

2.2.1 Linear motion

Linear motion results from an unbalanced force acting on an object. This motion
of a particle is simple to calculate from Newton’s laws of motion. Newton’s Law II

may be stated as

d(mv)
f=k 2.1
p” (2.1)
where f is the unbalanced force vector on the particle
m is the mass of the particle
v is the absolute velocity vector of the particle
mv  is the momentum vector of the particle
k is a factor of proportionality
If m is constant, the law becomes
dv
f=km— =kma 2.2
o (2.2)

where a is the absolute acceleration of the particle. A suitable choice of units,

2

for instance kg and ms™, enables k£ to become unity so that

f =ma (2.3)



CHAPTER 2. PHYSICALLY BASED MODELLING 36

The rate of change of a particle’s position vector, p, with respect to a point is
defined to be its absolute velocity. The absolute velocity v of a particle can thus

be written as

_9p _ .

=, =P (2.4)

A%

In turn, the rate of change of a particle’s velocity is defined to be the particle’s

acceleration.
dv d’p
_ %Y o - 2.5
AT VT TP (2:5)

Since Equation 2.3 gives the instantaneous acceleration of a particle, it is neces-

sary to integrate Equation 2.5 to obtain the path of a particle.

P=/vdt+p'=//adt2+P" (2.6)

where p’ and p” are arbitrary constants derived from the boundary condition.

2.2.2 Rotational motion

Rotation may also result from applying forces to objects. These rotations result
from a ‘turning effect’, or more specifically, a moment. Moments are calculated by
taking the force’s perpendicular distance from the point about which the rotation
will occur, and multiplying it by the magnitude of force.

A classic textbook example for testing this observation is a door. Where the
perpendicular distance is small, such as near the hinge, the door becomes much
more difficult to open and close, and finally at the hinge itself, the door cannot
be moved at all. Similarly, the perpendicular distance can also be changed by

varying the angle of the force, making it very difficult to influence the door if all
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of the push is towards the hinge.

The moment about a particle can be illustrated if the particle can be affected
by a force applied some distance away from it. Hence, we represent a particle
subject to a rotation as a sphere with a rigid rod to show where the force actually

acts to cause a rotation as shown in Figure 2.1.

A

Figure 2.1: Rotation of a particle due to an offset force

The moment can now be calculated as described above, or using the vector cross
product. The moment e is given by the vector product (denoted here as A) of the

force vector (f) and the vector from the force to the turning point (p)
e=pAf (2.7)

The resulting moment e will have the following properties:

e It is perpendicular to both f and p.
e Its magnitude is pfsinf, where 6 is the angle between f and p.
e The action of the force will be to cause a rotation about e (and similarly é,

its unit vector equivalent).

In practice, a moment cannot be applied to a single particle in isolation, since a
force cannot readily be applied at a point some distance away from it. Situations

where these principles can be applied will be presented in later sections.
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2.3 Action of forces on collections of particles

The action of forces on a single particle can be extended to collections of parti-
cles. Forces which do not exert between particles are known as external forces,
as in the case of wind flows or currents. This can be contrasted with forces be-
tween particles that interact with each other, for example mutual gravitational

or electrostatic forces which are referred to as internal forces.

2.3.1 Linear motion

Consider a system to merely consist of a collection of particles which may be
interacting or otherwise. The linear motion of such a system can be derived as
follows [Lew71]. Figure 2.2 shows two interacting particles p; and ps (at some
distance from an arbitrary origin O) which experience internal force vectors f]

and f; and external forces denoted by f; and f;.

Figure 2.2: External and internal forces applied to two particles

Newton’s second law applied to each particle gives

fl + f{ = mlf)l (283)

Since the total interaction f] + f} is zero by Newton’s third law (and so f] = —f})
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the two formulae may be added giving
fi + £, = mip1 + maPe (2.9)

The sum of the external forces is therefore equal to the sum of the mass

accelerations i.e:

Yf= ﬁj M P (2.10)

Interestingly, Equation 2.10 works for any number of particles. In a system con-
sisting of three particles for example, there could be as many as six internal forces,
all of which sum to zero. This implies that the acceleration of any system of par-
ticles is not influenced by any internal forces there may be, although the motion
of individual particles within the system certainly is. The macroscopic motion of
a system is therefore determined by the external forces which are applied to it.

Expanding Equation 2.10 gives

d_f=mupy+mPy+ -+ mapy (2.11)
which can be rewritten as

Y f=(mi+mo+---+m,)p=Mp (2.12)

where M is the sum of the masses in the system. Equation 2.12 shows that there
is a unique point C associated with the system whose acceleration is p. This
acceleration is the same as it would be if all the particles in the system were
located at C'. This tells us that the total external force is equal to the rate of
change of linear momentum, which is in turn the same as the rate of change

of linear momentum of a system whose mass is concentrated at C'. Integrating



CHAPTER 2. PHYSICALLY BASED MODELLING 40

Equation 2.12 twice gives

> (mp) = Mp (2.13)

from which we get

> (mp)
M

p= (2.14)
C' is called the centre of mass (COM) (sometimes also called the mass centre or,
somewhat misleadingly, the ‘centre of gravity’) and Equation 2.14 enables us to
find its position. The definition and properties of this COM are summed up by
the following quotation [Lew71]. “There is a mass centre C associated with a set

of particles:

e Whose position is independent of the origin chosen,

e Whose motion is independent of any internal forces,

It is typical of the system as a whole since, if every particle were to have

the same motion, it would be the motion of C,

e (' lies within the convex polyhedron bounded by the particles,

Its motion is as if all the particles were concentrated at C' with all the forces

acting together at C' on them.”

2.3.2 Rotational motion

To obtain a model for the rotational motion of rigid bodies, the turning moments
have to be taken into account. A similar derivation can be used for a rotation of a

collection of particles, again starting with Figure 2.2 and Equations 2.8, moments
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can be taken about O to give

P1 N f1 + P1 N f{ = P1 A m11")1 (215&)

P2 Afo+ P2 A, = paAmeDe (2.15b)
Again, the internal forces will have a cancelling effect on each other,

piAfl+paAfy, = (p1—p2) A (2.16)

= 0
since the interaction is parallel to (p; — p2), resulting in
p1 A fi + p2 Afy = p1 AmiPr + pa A map (2.17)

The moment of the external forces is equal to the sum of the moments of the

mass accelerations. Generalising the above equation gives

N N
Y P AL =) Do AmgpDn (2.18)
n=1 n=1

Again this holds for any number of particles as all the moments of the internal
forces will cancel in pairs as in Equation 2.17. This is a very important result
because it tells us about the motion caused entirely due to the turning moments
generated by external forces on the system. Maintaining the parallel with the

derivation in the previous section, we can rewrite Equation 2.18 as

N N .
S puAf, = (Zmnpn> AP (2.19)
n=1

n=1

Where p is the instantaneous acceleration, so at any one instant in time this

equation will hold. While it is acknowledged that in general p is unlikely to be
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constant for any significant time, to keep the derivation simple this is assumed to
be the case. A notable case where this is true is within a uniform gravitational
field in which p is observably constant. Now we can rewrite this bringing it closer

to Equation 2.12 with which we are trying to draw a parallel.

N
> puAf,=MpAD (2.20)
n=1

This can be rearranged into a more convenient form to give

N
> puAfu=DAMP (2.21)
n=1

This tells us that there is a torque acting on a unique position relative to the
COM.

While this result is interesting, we cannot determine the motion of a discon-
nected system of particles without full knowledge of their interactions. Moreover,
p has to be the same for each particle for the equation to hold. Hence it is
not really meaningful to talk of the rotation of such a system but once they are
connected, as in the case of a rigid body, their velocities and accelerations are

related.

2.4 Action of force on a rigid body

In this section we describe how the motion of a rigid body is affected by the
forces applied to it. A formal definition of a rigid body is given in [SB90], and is

summarised by the quotation

If in any displacement the distances between three reference par-
ticles Py, P;, P, and the body co-ordinates of each particles P;(i =

3,4,...,N) remains unaltered, then the body is described as a rigid
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body.

Less formally, this means that a rigid body consists of particles which are locked
together and hence move in unison. We deal with the mechanics of bodies in
this section, and as such it is useful to add new shorthand conventions to the
notation. Much of the mathematics discussed so far can be extended to rigid
bodies as though they were ‘large particles’. To maintain this parallel, capitals

are used for body properties such as mass, force or position.

2.4.1 Linear motion

A body’s linear motion is analogous to that of a theoretical particle located at
its COM. This particle can be thought of as possessing the sum of all the masses
in the body. So, in body notation, the total mass M4 and force acting upon the

body F4 (only useful for linear motion) of a body A consisting of n particles are

defined as
i=1
Fa = > fai (2.23)
i=1

Now it is possible to write body A’s linear acceleration A 4 in this notation

Ay =-2 =V =P (cf Equation 2.5) (2.24)
My

Maintaining the parallel between a particle and a rigid body whose mass is con-

centrated at the COM, P is

[2?21 mAa. pA.i]

P.=
A M,

(c.f. Equation 2.14) (2.25)
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2.4.2 Rotational motion

It has been shown that the moment exerted by the external forces on a rigid body
causes rotation but the shape, or more precisely the distribution of mass within
the body, also affects it. An equation equivalent to Newton’s Second Law exists

for rotation. Compare

d

=—I 2.26
7= lw (2.26)
with
d
f= P (2.27)

T is called torque and is the rate of change of the total moment of momentum.
The rotational equivalent to mass, I, is the moment of inertia. Unlike mass, it is
not a scalar, but is in fact a 3 by 3 matrix based at any one instant on the shape
of the object in question. Imagine applying a moment to a plate: it will behave
differently depending on the axis about which the rotation takes place.

The derivation of the relationship between the forces applied and the resulting
angular velocity w is shown in Appendix C.2 [SB90], finally arriving at how to

calculate the moment of inertia

A —-F —-FE
I=| —F B -—D (2.28)
-F -D C
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where
A=>"m(y*+2°) D =) myz
B =>"m(z*+1?) E=> mzx
C =Y m@®+y°) F=> may

The parameters z, y and z are the distances (in the corresponding dimensions)
from the COM to each particle in the body. Only in the case of a body consisting
of point masses can the moment of inertia be calculated in this way. To compute
the inertia tensor of bodies which are more complex, calculus techniques are used
to break the shape into an infinite number of points, the moment of inertia of each
is computed, and then recombined to give the final moment of inertia. Tables of
common shapes and their corresponding moments of inertia are widely available.

It is worth pointing out that in a world co-ordinate frame a body’s inertia
changes as it rotates. This can lead to rotational motion which appears quite
complex, as in the case of a Frisbee thrown into the air off-axis. Many researchers
maintain objects in local co-ordinate systems to avoid an inertia calculation for

each frame.

2.5 Simulation of motion

Physically based simulation of motion involves integrating the equations of motion
over a time step using some suitable method. Researchers normally classify their
systems as forward and/or inverse dynamic systems. These terms refer to the
nature of the question posed. For example in forward dynamics we are asking the
question: given an initial state, what is the state at time ¢t? Whereas in an inverse
dynamics system the question being asked is: what forces are needed to ensure

a certain outcome? When the forces are known, they are incorporated into the
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model and then integrated over the chosen time step. This section covers these
terms in more detail together with a discussion on two widely used integration

methods.

2.5.1 Forward dynamics

Simulations which involve applying forces and/or torques to bodies and observ-
ing the outcome are known as “forward dynamics” problems. The equations of
motion will relate subsequent positions to forces, current positions, accelerations,
velocity and other state information, usually as a second order Differential Equa-
tion. All the state information is known from the previous iteration and the
simulation is advanced by integrating the forces over the time interval. A num-
ber of numerical techniques exist to perform such computations, each varying in
their degree of accuracy and complexity.

The general case of solving higher order ordinary differential equations (ODEs)

can be reduced to a set of n coupled first order differential equations [PTVF92].

For the functions y;, where 1 = 1,...,n these equations have the general form
dy;(t

where the functions f; are known. However, to solve these equations further infor-
mation about the type of problem is required. The functions y; in Equation 2.29
have boundary conditions which can be satisfied at particular points. The type
of boundary conditions that exist usually provides a clue as to which numerical
integration technique is most appropriate. The specific type of problem addressed
in this thesis is called an initial value problem. In this case, all the values of y; are
known at some starting point and the values of y; are computed at some desired
time ¢. The two most popular numerical methods to solve this type of problem

are called Euler and Runge-Kutta, and these are considered below.
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Euler method

This method is the simplest and least accurate numerical integration technique

available. The algorithm uses the following formula

Ynt1l = Yn T hf(tna yn) (230)

This advances a solution over the time interval A from %, to t,,.1 using the deriva-
tive at the beginning of that interval. Naturally, less error is introduced if the step
size is very small, meaning that the change in the derivative over the time step is
negligible. Accuracy can be traded off against performance for VR applications
particularly since we are interested in plausible motion. In this context the most
important issue, aside from being responsive to user interaction, is believability.

Does the result convince the user of plausible motion?

Runge-Kutta method

Runge-Kutta is an extension to the basic idea of the Euler method. The algo-
rithm involves performing some trial steps to gain further information about the
derivative in a given interval. The simplest type of Runge-Kutta method involves
using the derivative at the start of the time step to find the midpoint of the
interval. The new derivative at the midpoint is then used to integrate over the

whole interval.

h k1
Ynil = Yo+ ko + O(R®) (2.31c)

This is a second order Runge-Kutta because by convention the error term O(h"*1)

indicates the order n of the method.
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The most frequently used Runge-Kutta method is the fourth order Runge-

Kutta which requires four calculations of the derivative for each time interval.

ki = hf(tn,yn) (2.32a)
h k
ky = hf (tn + 55 Yn + é) (2'32b)
h k
ks = hf (tn + 5 Un f) (2.32¢)
k k ks k
Yni1 = Un+ M + 2 + >3 + b + O(h5) (2.326)

6 3 3 6

In general, the fourth order Runge-Kutta is more accurate than the second order
except when the time interval is too short.

Since the Euler method is the simplest to implement and can offer a perfor-
mance advantage over Runge-Kutta it was considered to be a suitable integration
method to use. We acknowledge that this method has some disadvantages; in
particular the Euler method may result in an accumulation of error faster than
Runge-Kutta over a simulation. We argue that ultimately most numerical inte-
gration methods only give an approximate result [PTVF92] so it is not possible

to ensure complete fidelity of an integration method.

2.5.2 Inverse dynamics

Forward dynamics is sufficient to solve many types of problem, such as finding
where Mars will be at any given date and time in the year 2010. However many
problems have an interrelation between components of a scene which requires
more information about the forces exerted before forward dynamics can be per-
formed.

A classic example of this is a pendulum, where the pin both exerts forces on

the pendulum (otherwise it would fall to the floor) and is itself exerted upon.
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The force exerted on the pendulum and pin, if known, can be used in order to
determine its behaviour. This calculation, computing forces from the current
and desired state of a scene, is known as inverse dynamics because the equations
used in forward dynamics are now used in reverse. In other words force is being
computed rather than acceleration.

Finding forces which will meet a set of criteria is normally beyond analytical
means, and so requires numerical methods which vary forces until optimal values
are found. Once suitable forces have been computed, the time step is advanced
by performing a forward dynamics calculation. A good discussion of dynamics

techniques can be found in the SIGGRAPH 1990 course notes [Wil90].

2.6 General particle based models

A particularly successful class of physically based models for computer graphics
are particle systems. Researchers have used particle based models for simulating
a wide range of natural phenomena from fire, waterfalls and wind-blown leaves to
steam rising from a cup of hot tea [Ree83, Sim90, WH91, SF93, MM99|. These
often beautiful effects are achieved by rendering particles in different ways and
often changing their attributes as some function of time. All particle based models
have some type of force acting on the particles in a simulation. Particles can be
either interacting or non-interacting. The former type of system is one in which
internal forces are present, i.e. each particle exerts a force on other particles in
the system. This type of system is shown in Figure 2.3, the dashed lines represent

forces between pairs of particles.

Figure 2.3: An interacting particle system
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Newton’s law of gravitation states that any two particles in the universe are

attracted to each other by a force

F=a ( (2.33)

m1m2>
r2
where r is the distance between particles with masses m; and my and G (=
6.672¢ 1! Nm?kg?) is the gravitational constant. Although this law can be used
to compute inter-particle forces, the magnitude of this force will often be negligible
between a significant number of particle pairs, due to their mass or distance, and
can therefore be omitted [Gia84a, Gia84b]. For computational efficiency, most
interacting particle system models are simplified by considering a particle’s force
to have a finite scope. This is a reasonable simplification because a particle’s
gravitational force is usually a rapidly decreasing function of distance.
Non-interacting particles are totally independent of each other. The motion
in such systems is completely governed by external forces, such as gravity within

earth’s field. Figure 2.4 shows a particle system subject to the external force g.

iy

Figure 2.4: A particle system with gravity acting on it

This class of particle system is very attractive from a computational point of view
because it is so simple. Some particle systems combine internal and external forces

to achieve interesting effects at a moderate computational cost.

2.6.1 Simple particle models

We classify simple particle models as those which are manipulated exclusively

by external forces. These types of systems have been used very successfully to
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animate fire, fireworks [Ree83], smoke [SF93] and waterfalls [Sim90]. The stun-
ning effects achieved by using these particle based models can be attributed to
two important aspects; firstly, the natural evolution of the motion of particle
systems under external forces and secondly the way in which they are rendered.
William Reeves [Ree83] used a simple particle based model for the wall of fire
(the “Genesis Effect”) in the film “Star Trek II: The Wrath of Khan” [PMT82].
His subsequent paper was instrumental in launching particle systems as a useful
simulation technique in computer graphics. Reeves considered a particle system
to be a collection of non-interacting minute bodies which collectively represented
a fuzzy object. In his simulations, particles were born with a particular state rep-
resented by attributes which define their colour, transparency, size and lifetime.
The first three attributes may change over the life of the individual particles.

He concluded that a particle based approach was promising for simulating
clouds, fire and smoke. Particles can be efficient to render when treated as point
light sources. Also, rendering them as line segments could give the illusion of
motion blur at low computational cost.

Non-interacting particle models of the type described above are excellent for
use in special effects. However, as we shall see, they are applicable only in a lim-
ited context. Hence, many researchers have attempted to take the basic elements
of such models and explore how they could be used to achieve more complicated

effects.

2.6.2 Complex particle models

There are fundamental limitations to the effects achievable by simple particle
systems. One particular problem associated with particle systems is the lack of
control over the configurations that the systems finally settle into. For animation

purposes, a certain outcome may be desired but it is often difficult to assert
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sufficient control on a particle system to achieve that outcome. Many researchers
considered the possibility of introducing added complexity to encourage particles
to adopt certain desirable configurations, in preference to less desirable ones.

Some of these approaches are classified here.

Interacting systems

This type of system may at first appear to be a slight variation on a simple particle
system. However, the inclusion of internal forces adds a significant degree of
complexity to the behaviour of the overall system. Each particle is now compelled
to move in a number of different directions, shown by the dashed vectors in
Figure 2.5. The vectors f and g represent external forces, and the dashed vectors
show possible directions of motion resulting from the combination of internal and

external forces acting on the particle.

Figure 2.5: Which way do I go now?

The final direction the particle is influenced to move in is the vector sum of all
the force vectors acting on it.

Possibly the best and simplest example of an interacting particle based model
was presented by Reynolds [Rey87]. He simulated flocking behaviour of animals
for animation purposes. Each flocking animal in the system was represented by
a particle. The overall flocking behaviour was achieved by moving individual
particle ‘actors’ according to rules which specified their motion relative to each

other, and is an example of a distributed behaviour model. Interestingly, every
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particle in Reynold’s model has the same programmed behaviour. This is common
to most interacting particle systems. The work described in this thesis takes the
idea of specifying particle behaviour much further as will be shown in Chapter 6.

An interesting model was published by Yi Wu et al. [WTT95] in which de-
formable surfaces were simulated using particle systems. In this particular work,
they achieved some very effective results at low computational cost by treating
a deformable surface as being composed of many particles. Each particle was
subjected to forces when it moved away from its rest position. The balance of
these forces governed the extent to which particles were able to return to their
initial positions. Using this method, they were able to create and animate skin
(with or without wrinkles), cloth, paper, rubber and plastic sheeting.

Miller and Pearce [MP89] illustrated the value of interacting particles for
animating viscous fluids. They defined objects called globules, which were the
primitives of their system. Inter-globule forces were specified such that soft col-
lisions could occur between them. This enabled their globules to flow over each
other, within the limits they imposed on interactions. By varying the interaction
behaviour they were able to simulate the flow behaviour of a wide variety of ma-
terials including powders, fracturable solids, solid-liquid transitions and jets or
sprays of liquids. The important point to note about this particular work is the
range of materials they were able to simulate at near interactive frame rates.

There are a number of other particle based models which illustrate the flex-
ibility of the approach notably [LJR™91, Ton91]. In both models particles are
animated separately and their motion is controlled by internal and external forces.
By varying the internal force functions the properties of the materials are changed
from solid to liquid or elastic to plastic. Moreover, topological changes are easy

to effect since each entity in the model is discrete.
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Oriented systems

The next stage of development, after making particles interact, was due to Szeliski
and Tonnesen [ST91]. They introduced some simple attributes to their Surfels,
an extension to the simple point mass representation of particles. Surfels are
considered to be minute surface elements each possessing a radius and a spatial
orientation vector. Consequently, the interaction between their surfels was pref-
erential in certain orientations. Linear and angular accelerations of particles are
computed using the standard Newtonian equations of motion. The particles are
held together by long range attraction/short range repulsion forces derived from
the Lennard-Jones potential functions. This type of function has an equilibrium
distance where the attraction and repulsion between the particles are balanced.

To affect surface forming behaviour, they derive an interaction rule from the
weighted sum of three potential functions which are zero when favourable condi-
tions are met. Forces and torques arising from each potential attempt to place
particles in desirable relative positions. These functions when integrated repre-
sent the total potential energy of the system during simulations. The potential
energy of the system is minimised as this energy state imposes the least geometric
strain on the system.

Szeliski and Tonnesen also developed a suite of tools for interacting with
their surfaces; these tools could change the orientation of particles thus achiev-
ing creasing or tearing of their surfaces. In addition, they developed a particle
growing algorithm which enabled stretching and reconstruction of surfaces from
sparse data sets. This particular work was an interesting development in parti-
cle based simulation because, prior to it, particle based models were primarily

volume based, and were not used to model and reconstruct surfaces.
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Spring-mass-damper systems

The early development of particle systems research took two relatively different
directions. Some researchers chose to develop the concept of interacting particles
with sophisticated attributes and rendering methods, whereas others investigated
the effects of connecting up point masses into organised meshes. In many of
these approaches materials such as cloth [BHG91, BHG92, BHW94, CDR96] are
typically represented as height mapped 2D grids connected by deformable units.

Terzopoulos and Fleischer [TF88] used a model consisting of a spring in paral-
lel with a spring and dashpot, shown in Figure 2.6!, where a dashpot is defined as

a loose fitting piston in a cylinder containing a liquid of a given viscosity [Cow73].

Figure 2.6: A mechanical model for deformation

The spring acts as a store of recoverable energy, since springs deform elastically
and linearly to applied force. The dashpot on the other hand represents the loss of
energy, in a form such as heat when a material is deformed, at a rate proportional
to the applied force [FvFH90]. This type of mechanical model can be used to
simulate the stress-strain relationship of materials capable of deforming. The
combination of springs and dashpots in the model can significantly affect the
deformation characteristics of the material.

The springs in Terzopoulos and Fleischer’s units stretch gradually until the
force on the dashpot reaches its threshold. At this point the dashpot slides and
the spring attached to it compresses momentarily until the other spring takes

up some of the load. Their results were very convincing and they showed their

! Adapted from Computer Graphics Principles and Practice [FvFH90] p. 1042.
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materials draping naturally over obstacles and tearing.

In a subsequent paper Terzopoulos et al. presented a similar system in which
they were able to simulate melting blocks of flexible material [TPF89]. The
solid was represented as a network of mass points inter-connected by springs of
variable stiffness. Each spring possessed a threshold ‘temperature’ at which it
was destroyed. The world temperature was raised gradually in their simulations
causing the gradual breakdown of the network. Force functions between particles
were used to control the motion of particles that detached themselves from the

network. Again they showed some very impressively rendered results.

Connected systems

Connected systems are similar to spring damper systems but we classify them in
their own category because they use multiple meshes. For example in Wejchert
and Haumann’s animation “Leaf Magic”, each of their wind blown leaves was
modelled using primitives consisting of eight particle nodes connected by springs
which represented the vertices of a flexible polygon mesh [WH91]. They defined
the wind system as a set of basic ‘airflows’ which they combined to model complex
wind patterns.

The technique of modelling objects by building them up from small meshes was
used effectively by Miller [Mil88] for simulating the motion of snakes and worms.
Each segment of Miller’s creatures was modelled as cubes of masses connected
by springs along the edges and diagonals of each face. Through detailed study
of the locomotion methods of snakes, Miller was able to effectively capture the
essence of this type of motion in his results.

More recently a similar method was used by Holton and Alexander [HA95]
for modelling material behaviour by connecting up particles. Their soft cellular

approach consisted of defining tetrahedral structural primitives called cells, each
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comprised of mass points joined by deformable connectors. These cells were then
used to build up larger objects such as muscles. In addition to deformable material
behaviour, they were able to simulate fracture and breakage at low computational
cost. They anticipated possible applications in virtual reality surgery training and
their work represents a proof of concept of real time interactive connected particle
systems. None of the above approaches used any means of inter-mesh interaction

between primitives.

Implicit Surfaces

While the above systems have used particles which directly represent both the
volume and surface of the materials, Desbrun et al. [DG94, DG95]| treat particles
as control points. The particle system is used to model large scale deformations.
A body may be composed of any number of rigid skeletons, and a sizeable number
are required to define the macroscopic shape of the body. Skeletons can interact
with each other via force functions.

Local deformations of the surface are modelled by an implicit surface defined
as some function of the underlying particle system. In other words the particle
system implies the actual surface of the material. The implicit surface param-
eters are stored at each animation step, thus enabling subsequent high quality
rendering.

Desbrun et al. were able to simulate the behaviour of soft substances such
as clay or dough, particularly at boundaries where they tend to merge together
when compressed. Moreover, they were able to compute animation sequences at
interactive frame rates.

In general, these types of models suffer from the problem of unwanted blending
between objects. This arises due to the fact that when two objects converge

their implicit surfaces prematurely merge into one, and Desbrun et al. propose a
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solution to this problem [DG95].

2.7 Summary of general particle based models

Each of the above techniques has been successful in terms of its ability to achieve
the desired system behaviour. However, the techniques listed only use either
particles and force functions, or spring dashpot type connections, as a means
of limiting particle motion. They each have their particular strengths within the
context of their application and illustrate the wide variety of effects particle based
approaches can be used to achieve.

It is interesting to note that little research has been carried out on interact-
ing articulated rigid body systems which enable body interactions to be defined
using a particle based modelling approach. There are a wealth of effects to be
achieved by experimenting with interacting structural primitives, one of the top-
ics addressed in this thesis. In particular inter-body interactions between whole
bodies or parts of bodies may provide a method of controlling and directing forces
on bodies. To successfully generate articulated structural primitives with rigid
connections involves looking into the domain of simulation of rigid body systems

using constraint based techniques.

2.8 General constraint based techniques

Restrictions on many different types of systems are governed by rules which de-
scribe desired behaviour under a certain set of circumstances. Such rules can be
called constraints and are often satisfied simultaneously to impose some condi-
tion. Constraint satisfaction enables the model to fulfil some goals specific to the
nature and application of the model.

The idea of specifying constraints is frequently used in artificial intelligence
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decision making applications. An example of this can be found in the case of
simulation software used to aid the decision making process in nuclear emergen-
cies [FPRS98]. Each countermeasure strategy has attributes which are weighted
and the software minimises these, according to some initial criteria, to provide a
ranking of strategies.

To algebraically solve these types of problems is very difficult except in the
most simple cases thus, almost all constraint based systems use a suitable solver
to find a solution to a problem subject to the given constraints.

Constraints can be satisfied in one of two ways, inexact or exact solution. An
inexact approach varies the inputs to the solver to find a solution at which some
measure of the state of the system is minimised or maximised. For example,
the monetary cost of an action in a decision making system. The exact solution
approach requires the solver to solve a set of equations to give a specific value.

The type of constraint satisfaction technique used gives an indication of the
type of solver algorithm to use. We are interested in a subset of this subject area,
in particular that of constraining the motion of bodies with an exact solution
method. To provide context for our method we describe, in the following section,
the types of constraints animators normally wish to apply and categorise a number

of existing approaches.

2.9 Constraining particles or bodies

Typically animators constructing objects from bodies wish to somehow limit their
motion while still obeying Newton’s laws. Imagine trying to construct a chain
from a number of bodies (links) and hanging it from a point halfway up a wall.
To solve this type of problem involves keeping the joints between bodies intact,
maintaining the position from which the chain hangs and computing its overall

motion subject to the forces applied.
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Common types of constraints applied to bodies involve either computing ex-
actly, asymptotically or minimising values such as positions, velocities, acceler-
ations, forces or energy. Some of the more common objectives which can result

from these calculations are listed below.

A body to a fixed point This constraint (also called point-to-nail) ties a point
on a body to a particular co-ordinate in space, as shown in Figure 2.7.

nail

o

constraint force

v
gravity

Figure 2.7: A body to a fixed point constraint

A body to another body Joints between two bodies are assembled using this
type of constraint (also called point-to-point). Normally only two bodies

can make up a joint. This type of constraint is shown in Figure 2.8.
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Figure 2.8: A body to another body constraint

A body to a path Also called point-to-path, it forces a point to follow an ar-
bitrary path specified by the user as shown in Figure 2.9. For example
constraining a small hoop to a wire superficially resembling the common

fairground game. This is not the same as scripting a point moving along a
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line or surface because the actual motion is determined by other events in

the scene.

path

constraint force

rod |
\
gravity

Figure 2.9: A body to a path constraint

The orientation of a body This type of constraint aligns an object by rotating

it as in the case of posting a rigid envelope through a letter box.

Surface to surface This constraint can be compared loosely to a point-to-point
constraint but with the distinction that the constraint is between any point
on one body and any point on the other. This could be useful for animating

a drop of water gradually progressing down the side of a glass.

Point inside surface A point on a body is maintained inside a particular sur-

face but can move freely within, for example, a piston in an engine cylinder.

Collision and contact restrictions are not considered here, since while they are
often talked about in terms of constraints they are generated as discontinuities
in the simulation and have to be explicitly tested for.

There is a large body of research devoted to solving for the motion of con-
strained systems, from which a number of different methods for imposing the
types of constraints described above have been investigated. These are classified
below in terms of the class of solution method employed, according to Platt’s

classification [Pla92].
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2.9.1 The projection method

This is the simplest method for enforcing constraints and usually involves exact
solution of unknown constraint forces. The main benefits of this approach is that
it is simple to program, is possibly the least computationally intensive and the
constraints are fulfilled as soon as they are specified.

Drawbacks of this approach are that if two bodies are very far apart, the
force required to instantaneously satisfy the constraint can be huge, thus leading
to instabilities in elastic models. Secondly since the outcome is based on both
forces in the system and applied forces, animators can find it difficult to achieve
a specific outcome due to the difficulty in relating positions to forces. Models
which lie in this category often have little in common with each other, because
they use significantly different techniques to ensure the broad objective that all
forces are computed to bring the system to an exact solution ‘instantaneously’.

Isaacs and Cohen [IC87] implement a simulator where three methods of control
are provided: “Kinematic constraints” for traditional keyframe animated systems,
“behaviour functions” to relate the momentary state of the dynamic system to
desired forces and accelerations, and finally “inverse dynamics” to determine the
forces required to perform a specific motion. They are able to create joints with
varying degrees of freedom allowing them to create pin joints, universal joints and
ball and socket joints. This has allowed them to simulate a large repertoire of
objects, including chains, trees, whips and a simplified representation of person
on a swing.

Auslander et al. [AFP*95] experimented with articulated figures, primarily in
2D. Their simulations are different because equations are not solved to find forces
as in inverse dynamics. Instead a searching algorithm applies inputs while trying
to assess outcomes which are considered fit according to some criteria. This can

take in the order of five minutes to evaluate 40,000 outcomes for a character to
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perform a simple cartwheel. Clearly such simulations are too complex to run at
interactive speeds.

Sohrt and Briiderlin [SB91] describe the application of geometric constraints
to CAD/CAM, arriving at a very different type of simulator. The system attempts
to maintain constraints between objects as a design is assembled. A novel feature
is that the system will try to construct implicit constraints. So, for example, if
a block is placed on a table it will try to retain this relationship, allowing it now
to only move along the table’s plane. Furthermore, when the table is moved,
the object should be moved with it. Their constraint solver is used to restrict
relationships to requested distances, slopes or directions. Fernando et al. use a
similar technique in a VR context [FWT98].

These techniques avoid the disadvantages of the projection method by careful
choice of application. For example by activating constraints only when they are

appropriate, or by not considering elastic systems.

2.9.2 The penalty method

It is best to think of this method as one which introduces a restorative force to
compensate for a body being pulled away from its desired position. Platt [Pla92]
suggests that it is equivalent to adding a rubber band to a mechanical system,
which attempts to pull the body onto a particular position.

The main advantage of this approach is that adding a rubber band to the
model is simple, and so this type of model is considered to be easy to use but
a number of disadvantages exist. Exact solution of the constraints is not guar-
anteed, but in general this is required because otherwise joints may appear to
oscillate. Consider the example of animating an articulated figure such as an an-
gle poise lamp. Unless specific Disney-like appeal is desired, it would be abnormal

if the joints oscillated causing the lamp to jiggle.
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Another important disadvantage is that as the restorative force increases, the
differential equations representing the physical system become stiff. This means
that there is little variation in the solution between time steps and so the solver
spends a large amount of time computing solutions for each step without much
to show for the computation. Finally, it is difficult to know how to increase the
restorative force as the simulation proceeds.

Andrew Witkin et al. [WFBS87] present this type of model. Their constraints
are expressed as energy functions which behave like forces pulling the model into
place and maintaining the condition. A simple energy function can be imple-
mented as a spring connecting two points on different bodies. The motion of
the system is computed by minimising the energy constraints. They supply a
catalogue of basic constraints and corresponding energy terms.

In a later work Witkin et al. [WGW90] present a hybrid model which builds
upon the penalty method by combining it with the constraint stabilisation method
described in the following section. The objective of this work was to dynamically
assemble objects by pinning together predefined parts with constraint forces.
Naturally the reverse action could also be performed. Their constraint forces
were a function of time so the constraint was met at a particular time ¢, thus
generating a smooth animation. Using their model they were able to interactively

add or remove constraints during a simulation.

2.9.3 Constraint stabilisation

Extra constraint forces are introduced to enforce exact solutions and can be con-
sidered as a variation of the penalty method. Essentially if the system starts to
drift away from the constraint it is pulled back by an exact restorative function,
the magnitude of which is called a Lagrange multiplier, rather than being pulled

back by an approximate force exerted by a rubber band as in the penalty method.
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Advantages offered by this technique are that constraints are exact and grad-
ually fulfilled. Forces are added to the model but the animator is relieved of the
burden of specifying forces to achieve a desired outcome, but the rate of constraint
satisfaction is controlled by parameters which are themselves unintuitive. Worse
still, for certain choices of these parameters, the system will oscillate multiple
times around the point where the constraint is satisfied.

Platt and Barr [PB88] published an early approach using Lagrange multi-
pliers to gradually find exact solutions for the motion of flexible models. They
show examples of mouldable clay-like substances which maintain their new shape
after strong deformation. Baraff [Bar89, Bar92a| also used Lagrange multipliers
to impose collision and contact constraints between rigid objects. Witkin and
Welch [WW90] use the stabilisation method to animate and control non-rigid

structures.

2.9.4 Dynamic constraints

Barzel and Barr coined the phrase dynamic constraints in their publication [BB8S]
which presented one of the first approaches to modifying and applying stabilisa-
tion constraints in computer animation.

They wanted to control the speed at which constraints are satisfied so that
they could animate assembly of models in a smooth and aesthetically pleasing
manner. Thus they suggested a specific modification to the constraint stabilisa-
tion method which results in the system being pulled back asymptotically to the
constraint with damped motion.

Dynamic constraints offer the same advantages as stabilisation constraints
but with the added benefit that the rate at which a constraint is satisfied can
be controlled. However the method can only be used with a limited set of con-

straints due to their constraint force formulation. Moreover, the constraints are
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never really met exactly as the constraint is pulled back asymptotically towards
zero [LKC93|.

Other researchers have used dynamic constraints to constrain rigid models
with articulating links. One example published by Peter Schroder and David
Zeltzer [SZ90] contains images from their simulation of a car. The car is mod-
elled as a body with four spring-damper shocks at the corners, together with two
steerable constraint forces at the front wheels and brakes. During the simula-
tion, the car was decelerated such that it would slide into a crossing, turning
sideways by about 100 degrees. They interactively chose parameters for their
spring-dampers which imparted a bouncy braking action.

Platt [Pla92] modified the constraint stabilisation and dynamic constraints
methods to arrive at a hybrid technique which he calls generalised dynamic con-
straints. He uses this technique to assemble deformable computer graphics models
in a smooth and aesthetically pleasing animation. He illustrates his method with
an example of a sphere falling onto a trampoline and bouncing.

Finally another technique termed sequential goal constraints was published by
Liu et al. [LKC93], to enable animators to set up sequences of transient constraints
that can be activated and then released as soon as they are satisfied. With the
dynamic constraints method, problems arise when the time in which a constraint
is satisfied is small and a relatively exact solution is required. In this case, an
object can appear to move rapidly towards its goal then remain near it for a long
period of time before moving rapidly towards the next goal. The sequential goal
constraints method deals with this problem while retaining the benefits offered

by dynamic constraints.
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2.10 Summary of constraint based techniques

It is surprising how much variation there is in the approaches taken to impose
constraints on objects. Nevertheless, it must be said that although all the models
described have been successfully used in animation and some of the behaviours
achieved would be attractive to simulate in a VR system, most are still too
computationally intensive. Even in the cases where constraint based techniques
were used for interactive animation systems, often the authors published frame
rates of simulations excluding rendering. In VR rendering the result is everything,
and the physical model has to be simulated at a fast enough rate to be usable
and viewable.

Another issue to consider is that animators find it difficult to script anima-
tions using constraints because the required programmed methodology can be
unintuitive, and they often find it difficult to visualise the implications of apply-
ing certain constraints. However, currently this is not such a serious issue for a
VE developer as most have programming skills. Furthermore specifying the exact
motion of an object is often not critical in many VR contexts, for example if a pen

is thrown along a desk the exact position it will end up in may be unimportant.

2.11 Hybrid models

Clearly a diverse set of behaviours can be modelled and animated using particle
systems. Recall that in §2.6 particle based approaches for animating fire, water-
falls, flocking animals, soft substances, powders, cloth draping, and deformable
material behaviours have been described. However, this range, albeit wide, does
not cover the entire gamut of behaviours that would be desirable to simulate and
interact with in virtual environments. For this reason another class of physically

based models was described in §2.8. This approach is particularly successful for
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animating articulated rigid body systems.

Since particle and rigid body approaches together cover a diverse range of
possible physical behaviours it would appear sensible to be able to support both
modelling approaches within a suitable framework. However, we have stated
that many of these models are implemented for specific applications and often
when these approaches are supported in a library they are found in isolation.
For example Tabule [Fau99] and AERO [KSZB95] only support rigid body mod-
elling. Other systems such as MathEngine [Wo0099] and Barzel’s ‘fancy forces’
approach [Bar92b| attempt to support both particle and rigid body models but
their support for particle based modelling is currently limited. Barzel on the
other hand provides his ‘fancy forces’ approach in order to script and attain some
goal so although in principle he could simulate and model particle systems, he
does not illustrate this.

A range of animation toolkits such as Alias/Wavefront [ALI], Softimage 3D
[SOF], LightWave 3D [LIG] and 3D studio MAX [MAX] support a wide variety
of different physically based modelling techniques [Mae96]. These systems are
not directly relevant for discussion in this thesis, because they are toolkits aimed
at users wanting to create and choreograph animations, and not middleware in-
tended for use by developers building applications. Within the domain of VR a
number of toolkits exist (described in Chapter three §3.2.2) which enable a devel-
oper to incorporate an often limited degree of physical simulation in applications,
but they enforce many strict conventions which the developer must follow in or-
der to implement an application. These toolkits generally have fixed application
programming interfaces which are difficult to extend or customise.

For the reasons discussed above it would be attractive to support a hybrid
approach which combines features of both particle systems and rigid body systems

within a customisable and extensible framework for physically based modelling
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in VR

2.12 Summary

In this chapter we have provided the foundation concepts necessary for later
chapters. We have highlighted the point that Newton’s laws are sufficient to
describe most commonly observable behaviour making his model of reality well
suited for many VR applications. Furthermore, we have presented a survey of
existing particle and constraint based models. These are classified in terms of the
models and methods used to solve the problem of specifying the motion of objects.
In this survey we have shown that interacting particle systems alone are not
sufficient for simulating complex behaviour because they are difficult to control.
Researchers have investigated methods of imposing additional control on particle
systems by restricting their motion through forces and connecting particles up.
Rigid body simulation techniques share many concepts with particle systems and
can provide a mechanism for simulating more complex constrained behaviours.
However, few particle systems and rigid body systems are implemented to coexist
in the same simulation so the benefit of this approach is highlighted. Finally note
that in general both particle based and constraint based approaches have been
successfully used in animation systems, but these do not necessarily have the

same real time performance and graphical requirements as a VR system.



Chapter 3

Software engineering concepts

ince the objective of the research described in this thesis is to define and
S implement a prototype framework for physically based modelling in VR,
a number of software engineering issues need to be discussed. In this chapter
we describe the concepts of object oriented design, software frameworks and in
particular motivate the need for a component framework with ‘white box’ (open
source using the term in the broadest sense) components. Finally the use of

scripting languages and motivation for using Perl to integrate components is

described.

3.1 Object oriented design

Object oriented (OO) design is based on the idea that real world concepts and
objects, such as an address or a person, may be represented as data structures in
a computer program. These data structures incorporate data and functionality
specific to the type of object or concept that they represent [Str87]. For example,
a person may have some data to represent their name, age, gender and some
methods to position and render them. Currently, OO design and implementation

is a much favoured programming paradigm, and has a number of advantages and
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disadvantages described below.

The OO approach lends itself well to modular design because of the way in
which related data and functionality is packaged up together and this subse-
quently makes the programming task more manageable. The design of objects
can be comparatively intuitive for certain applications, especially those which
involve computer graphics. For example, a graphics window could be an object
which may have some values (or attributes) to represent its internal state like its
size, background colour and font metrics. To resize such a window may require a
call to its resize function (or method). This association of a real world entity to
a program data structure is relatively easy to conceptualise.

Another feature of object oriented programming is the ability to call a method
on related objects for a similar end result, but with a very different implementa-
tion. For example, different shapes may all have a paint method which will cause
them to be drawn on the screen, but the resulting code called would be different
for circles and squares. This is possible due to dynamic binding, which enables
the actual method call to be determined at runtime.

Many of the disadvantages are not directly associated with OO concepts them-
selves, rather with the amount of initial design required. Many programmers are
unprepared for a substantial initial design effort and often may not actually know
enough about the application to make the correct design decisions in advance.

Many OO languages suffer from a performance overhead caused by calls to
dynamic methods. This can be seen as a serious disadvantage in any performance
critical application such as a simulator with real time performance demands. Of
all the most commonly used OO languages, C++ suffers the least from this prob-
lem as methods are bound at compile time by default. Another alternative, Java,
is considered to be a safer language because the programmer is not responsible for

memory allocation. However it can be argued that the output from current Java



CHAPTER 3. SOFTWARE ENGINEERING CONCEPTS 72

compilers is not as optimised as that produced by C or C++ compilers. Ongoing
research within the broad category of Java compiler, run-time optimisations and
high performance computing testifies to this [AFGT00, Cox, FPST00, Hay96]|.
In particular Alpern and Flynn-Hummel [AFH99] address issues related to high
performance applications. They discuss potential sources of performance limita-
tions in Java and survey existing approaches to solve these problems. Thus the
advantages offered by using C++ does make it a suitable language to implement

low level systems such as a simulator.

3.2 Software engineering frameworks

Broadly speaking, frameworks are reusable software architectural designs which
specify an approach for developing applications within them. By their very na-
ture they tend to be object oriented (OO) designs regardless of whether or not
they are implemented in languages that support this particular programming
paradigm. The reason for this is that they embody many concepts usually as-
sociated with OO, such as reuse of code, extensibility, encapsulation and data
hiding. Furthermore a framework defines an application programming interface
(API) for the problem domain that it is designed for.

Frameworks are useful because they provide core functionality at the mid-
dleware level to application developers. Consequently they are targeted at a
particular subject domain. For example a graphics library which provides in-
termediate level functionality specific for VR developers could be considered to
be a framework. The user (developer) will use functionality through predefined
function calls, conforming to the prototypes supported by the library. Achieving
a given action such as navigation is the main concern of the developer, while

the technique used to achieve the action is unimportant. Clearly providing a
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framework to developers is of significant value because they can be used to im-
plement a wide range of applications all requiring the same core functionality.
Consequently, robust and fully tested code can be reused in many different pro-
grams and the time required to implement large complex software systems can
be greatly reduced.

From Chapter 2 we have seen that physically based modelling is a complex
task and requires a large amount of core functionality to be implemented in or-
der to be able to simulate soft body and/or rigid body motion. To support this
physics in a VR context is valuable in terms of contributing to the realism and
functional behaviour of a VE but currently a large amount of implementation
is repeated for specific applications. In order to address this problem a frame-
work for physically based modelling is presented in Chapter 4. However it is
first useful to briefly discuss component frameworks in particular, describe some
related frameworks which currently exist, and finally to consider implementation

language and software engineering choices.

3.2.1 Component frameworks

A component framework is one composed of clearly defined separate software
parts (or components). There is wide scale debate over what exactly constitutes
a component and there is a large variation of granularity in the definition of the
term. In other words a component could be a function, a complex data-structure,
a software module or a complete software system. An accepted definition of a

component was given by Szyperski and Pfister [SP96] and is quoted below:

A software component is a unit of composition with contractu-
ally specified interfaces and explicit context dependencies only. A
software component can be deployed independently and is subject to

composition by third parties.
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Less formally, this means that a component has a clear and defined API through
which it can be used, has limited dependencies on other components and can
be used or developed in isolation without affecting any other components in the
framework.

Components can be categorised into three different types; black box, white
box and grey box [Szy98|. Black box components are those which can be used
only through the specified interface and the code which carries out the opera-
tions is always hidden from the user. This is considered to be beneficial because
the user only needs to know how to use the component not how it works, and
such components can be further developed and replaced by new releases without
updating programs that use them. It is widely believed that black box compo-
nents lend themselves well to re-use and Szyperski [Szy98] supports this view.
The argument for this case is based on two main considerations. Firstly, black
box components are often developed commercially and as such significant effort
is invested in support and ensuring that the product is robust. Secondly, such
components cannot be developed or customised by third parties and thus the
interface to the component can be maintained, thus applications which use them
will not require further development in order to use upgraded versions of the
components.

White box components on the other hand have their source code freely avail-
able. Szyperski [Szy98] states that this type of component is difficult to reuse
for two main reasons. Firstly, developers are free to significantly change the im-
plementation to suit their needs and secondly applications may rely on specific
implementation details. However, he does acknowledge that there is an advantage
to making a component’s source code available in order to enable developers to
better understand their functionality and how best to use it. Grey box compo-

nents are a compromise in that part of their source code is hidden and parts may
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be freely available.

We argue that white box components are more useful to applications develop-
ers for a number of reasons. Firstly, making the source code available allows the
developer to better understand the functionality of the component. Secondly, the
functionality of such components is much easier to extend. Thirdly, white box
components are much easier to integrate into frameworks particularly because
the types of problems developers will encounter cannot easily be foreseen so it is
difficult to implement a perfect black box component. Finally, developers can ex-
ploit their knowledge about white box components to implement more optimised
applications. We argue that these benefits more than adequately compensate for
the reuse problems highlighted by Szyperski. Furthermore we argue that white
box components can be reused over a broader class of application areas because
they can be customised.

Component frameworks are particularly useful when implementing large com-
plicated software systems which make use of a number of different techniques. For
example, in order to provide a middleware system for physically based modelling
in VR we can speculate that we would need at least three parts: a language
to describe physical models and their behaviour, a simulator engine and a VR
engine. The precise nature of these parts may be unclear at this stage and it
may be difficult to see exactly what base functionality or techniques need to be
supported, but a clear division of functionality can be seen. Furthermore once a
prototype system is implemented, new components can be easily integrated into
the framework using a clear prescribed technique. This has the benefit that a
more sophisticated or updated component (perhaps the simulator engine in our

example) can replace any existing ones in the system.
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Component integration frameworks

Three main component integration frameworks are considered to be current indus-
try standards. These are: Object Management Group’s CORBA! [Gro99, Gro],
Microsoft’s COM/DCOM [MS] (Component Object Model [Box98]/Distributed
COM [EE98]) and SUN Microsystems’ JavaBeans [BEA]/Java RMI [RMI] (Java
Remote Method Invocation). These approaches enable components to be glued
together by implementing appropriate stubs (or wrapper functions). It is difficult
to compare CORBA, COM/DCOM and Beans/Java RMI primarily because as
functionality is introduced into any one standard it quickly becomes incorporated
into the others, however a detailed comparison is presented by Szyperski [Szy98].
A problem with these frameworks as highlighted by Fayad and Schmidt [FS97] is
that they currently lack the semantics and interoperability (the degree of ease in
which components can be seamlessly made to co-operate) required to be effective
over a wide range of different application domains. Furthermore as stated by
Johnson [Joh97] most commercially available frameworks are specific to domains
such as user interfaces development or networked applications.

The High Level Architecture (HLA) standard [U.S98] is possibly one of the
most widely known component integration standards in the domain of distributed
simulation and was developed by the US Defense Modeling and Simulation Office
(DMSO). This standard prescribes the use of a ‘simulation bus’ into which a va-
riety of different simulations can be incorporated. Each of these simulation com-
ponents (called federates) are classed as members of a federation or distributed
simulation. Each individual component computes a portion of the overall sim-
ulation and broadcasts updates to distributed clients. The problem with this
particular standard is that it is very complex and currently supports over 125

different services. Furthermore it is designed for distributed simulation and as

LCommon Object Request Broker Architecture
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such is not particularly suitable for implementing the framework described in this

thesis.

Designing for reuse and extensibility

The following quotation from Demeyer et al. [DMNS97] best describes the prob-

lems associated with designing component frameworks which can be widely reused.

Unfortunately, the design of frameworks remains an art rather
than a science because of the inherent conflict between reuse—packaging
software components that can be reused in as many contexts as possible—
and tailorability-designing software architectures that are easily adapted

to target requirements.

Clearly individual applications each have their own unique set of requirements
although these can be common for broadly similar application categories. For
example a word processing application and a drawing application may use a
common set of user interface components. However a drawing application will
need some specific customisations unique to the purpose it is intended to serve.
The problem of being able to customise components becomes even more severe
when the application areas are very different; for example a word processor and
a VR crash simulator.

In the business world there is an increasing tendency to use black box compo-
nents. Evidence of this sentiment can be seen in the number of popular computing
publications [Mey99, Szy99, Edw99] which feature articles describing the princi-
ples of component frameworks. However, although the idea of being able to plug
together existing parts to implement a new system is attractive there are many
reasons for wanting to be able to tailor or customise components. Using black box
components can make it difficult for a developer to use knowledge specific to an

application in order to develop a sophisticated or more optimised implementation.
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We argue that it is helpful to consider reuse in terms of the degree to which
it is supported. Core functionality can be reused across a range of applications
while customised functionality can only be reused within the application domain.
For example, vector and matrix mathematics components could be used across
a range of computer graphics, drawing, and CAD applications. A customised
vector component may then form the basis of a representation of a primitive in
a particle system. When developing a vector and matrix component framework,
it is difficult to see the complete range of functionality that will ever be required.
Thus we believe the need for customising the core functionality of a framework
for physically based modelling in VR is essential. There are two ways of achieving
this, either by providing ‘hooks’ for user code or by making the source code freely

available, and furthermore both approaches can be used in conjunction.

3.2.2 Frameworks in VR

A number of VR toolkits exist which may be classed as frameworks since they pro-
vide a middleware development tool for building general VR applications. Some
of the well known VR toolkits DIVE [DIV], Meme [MEM], MR Toolkit [MRT],
Tandem [Tan], MAVERIK [HKG"98] and DEVA [Pet99] are briefly described

and classified as general VR frameworks.

General VR frameworks

The Swedish Institute of Computer Science’s (SICS) Distributed Immersive Vir-
tual Environments (DIVE) is a toolkit in which distributed VR applications can
be developed [DIV]. It supports simple dynamic behaviour of objects that are
described by Tecl scripts. Behaviour is executed as a result of events in the ap-

plication, such as user interaction signals, timers and collisions. DIVE reads
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and exports VRML together with several other 3D formats. Virtually no sup-
port for physical simulation is supported as standard but Anders Wallberg et
al. [WHN™98] in a recent work describe spring mass damper models of deformable
objects implemented using DIVE.

Immersive’s Meme toolkit (Multitasking Extensible Messaging Environment)
has an interpreted threaded language, allowing code to be typed at the command
line while an application is running [MEM]. Meme supports articulated models
but with only limited interaction and dynamic assembly or breaking.

The University of Alberta’s Minimal Reality toolkit (MR Toolkit) provides
a suite of low level software tools for implementing VR applications these in-
clude [MRT]; Object Modeling Language (OML), 3D modeler (JDCAD+), and
Environment Manager (EM) to support multi-user networked applications. OML
can be used to implement geometry and simple behaviour, there is no obvious
support for physical simulations.

Tandem is a distributed interaction framework for implementing collaborative
VR applications [Tan]. It uses CAVEIib for VR projection display, and CAVERN-
soft for networking and can be regarded as a component framework particularly
because the architecture exploits existing patterns in collaborative VR. Tandem
supports limited animation played upon events but no real support for physically
based modelling in VR.

The University of Manchester’s GNU MAVERIK [HKG™98] is a highly mod-
ular middleware C library for building VR applications also implemented in C
or C++. As such it supports no physical behaviour but a complementary frame-
work (DEVA [Pet99]) currently being developed is intended to support complex
object behaviour over distributed applications. The DEVA framework supports
behaviour through an environment hierarchy intended to represent the laws of

each node in the virtual universe (or metaverse in the DEVA terminology). Child
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nodes inherit fundamental rules which should be obeyed from the parent envi-
ronment. All environments inherit from a root called the ‘void’ which has no
properties of its own but acts as an aid to navigation around the metaverse.
Currently applications may be implemented within the DEVA framework using
CH++.

Currently, all the frameworks discussed above do not support physically based
modelling to any significant degree. This is largely due to the fact that most
have been developed as general purpose VR toolkits. A few general libraries
do exist for physically based modelling in VR and these can also be argued as
being frameworks because they provide a middleware resource for implementing
applications which use physically based modelling. A survey of the frameworks

considered to be most relevant is presented in the following section.

Frameworks supporting physically based modelling in VR

MathEngine [Wo0099] is one of the most general purpose C libraries for physically
based modelling. It supports a wide range of physical modelling techniques and is
able to simulate both rigid and deformable object properties. Applications which
use this framework must be written in C and currently only limited support is
provided for true VR as the display module is a simple OpenGL [OGL] imple-
mentation. MathEngine is unique in the sense that it does provide support for
a wide range of physically based modelling techniques. Other systems generally
support only deformable models or rigid body models. A number of examples in
each of these categories warrant discussion.

Firstly, two systems for simulating deformable object behaviour in VR are
described; Clayworks [CLA] and Chapman and Wills [CW97, CW98] unified sys-
tem. Clayworks is library for supporting physically based modelling in VR and

is currently under development. It has an as yet unfinished scripting language
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and it is intended that the new version (3.0) will support a full object hierarchy,
mesh deformation, bones, nurbs and metaballs.

Chapman and Wills [CW97] also present a proof of concept paper in which
they discuss the applicability of modal analysis (an implementation of the finite
element method) to physically based modelling of deformable objects in VR.
In a subsequent work Chapman and Wills [CW98] demonstrate a technique for
improving the performance of their model without loss of accuracy. Currently
their system is not available under general release.

Systems which could be categorised as frameworks for constraint based mod-
elling in VR include; AERO [KSZB95, KSB], Tabule [Fau99], Sced [SCE] and a
system being developed as part of the Salford Centre for Virtual Environments’
IPSEAM [FWT99] project.

AERO [KSB] was developed primarily for animation and uses a rigid body
simulator. It contains a 3D scene editor for designing simple scenes based on
bodies. Objects can interactively be placed and linked with joints or forces.
AERO runs in two different modes called animation and batch. In animation
mode, the simulations are carried out in real time but objects are rendered as
wire frames. At each time step batch mode outputs the scene to a file in a format
suitable for the ‘POV Ray’ ray tracing program [POV]. AERO is marketed as
a VR system but it is really only able to play a simple predefined animation
sequence in a VE. Little interaction with the animation is possible.

A more recent approach presented by Francois Faure considers the prob-
lem of physically based modelling in VR from an animation background. He
has published a number of methods for speeding up the computation of con-
straints [Fau96, Fau99|, which he illustrates through a simulator called Tabule.
In general, he has optimised computations by performing pre-processing, where

applicable, to convert the constraint solving problem into a more manageable one.
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His algorithms are applicable to acyclic and cyclic structures and he can compute
constraints for acyclic structures in linear complexity. The Tabule simulator is
essentially a rigid body simulator which uses a Newton-Euler integration scheme
and sparse iterative solution of a linear system of equations using the conjugate
gradient method. His system performs best with scenes which are acyclic, and as
such attempts are made to manipulate cyclic problems into a more suitable form
before solving the equations. Scenes with a few or very many cyclic structures
benefit little from this pre-processing, while with a moderately cyclic scene large
improvements are seen. Furthermore he implements collision and contact con-
straints. Currently, the Tabule simulator is not used in a VR context and cannot
simulate particle systems although Faure’s intention is to incorporate these 2.

Sced [SCE] is a modelling package that utilises geometric constraints to edit
objects in a virtual world and could be used at an intermediate stage from an
application to create scenes and export them to a variety of rendering programs.
As such it could be justified as a framework for modelling and editing geometric
constraints. Editing a model within Sced is achieved by interactively indicating
the conditions to be satisfied and then allowing the system to solve the constraint
satisfaction problem. Furthermore indirect constraints may be applied through
other bodies meaning that interdependencies may exist. A simple example of a
stack of boxes is given in which each box must lay on the top of the other, and
the adjacent planes must remain in contact. To achieve this, Sced constrains
the position and orientation of each box in relation to the box beneath it. Thus
when the bottom most box is moved, the stack follows as the system maintains
the constraints between boxes. Sced does not allow full integration within a VR
system, but instead supports the idea of outputting a scene graph to be rendered
by an external graphics system.

Terrence Fernando et al. [FWT99] present a generic system for supporting

2Personal communications with Dr. Faure.



CHAPTER 3. SOFTWARE ENGINEERING CONCEPTS 83

interactive assembly and maintenance tasks as part of a project called IPSEAM
(Interactive Product Simulation Environment for Assessing Assembly and Main-
tenance). The IPSEAM system imports CAD models into a scene graph and
allows the user to grab and manipulate objects in three dimensions via a virtual
environment interface. Fernando et al. use a component based architecture to
provide a framework specifically for interactive manipulation of CAD models. As
such it can form part of a larger system providing services to a certain class of
applications.

From the discussion above, it can be seen that relatively few systems support
a wide range of physical behaviours in a virtual reality context. One reason for
this is that it is a difficult objective to attain. This is particularly due to the
complexity of physical models in general and the real time performance demands
imposed by VR applications, an opinion supported by Chapman and Wills, Faure,
Logan et al. and Pettifer [CW98, Fau96, LWA94, Pet99] amongst others. We
argue that a component based approach is a better architecture to adopt for
this type of system as this provides a large number of benefits in terms or code
reuse, customisability and flexibility to incorporate a range of components into

the framework.

3.3 Scene description

It is now appropriate to consider the problem of complex scene description. We
believe a general framework for physically based modelling in VR should support
simulation techniques for both rigid and flexible bodies, so scene description may
involve construction of complicated models. For this reason we argue that an
easy to use, full and complete language is necessary for scene description. Thus
scene description language considerations and the choice of a high level script-

ing language as an application development language and component integration
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standard are described.

In a complex physical simulation there may potentially be any number of
different force functions acting on or between primitives together with a variety
of different types of constraints in the scene. These types of scenes are difficult to
describe in a low level language designed for systems development so it is valuable
to use more appropriate tools for the task.

Any potential VR scene description language (SDL) should contain concepts
capable of describing entities and behaviour from the real world in a virtual
world. Since the physical models are composed of objects (in the OO sense), a
language capable of supporting this programming paradigm would be desirable.
Since the simulator engine is performance critical it should be implemented in an
efficient language such as C++ however a SDL is not subject to the same efficiency
demands. It is more important that the SDL is easy and safe to program in.

An ideal SDL should provide a flexible method for developing VR applications
which use the simulator. Since the simulator could potentially be used in a wide
number of applications, it is undesirable to impose too many restrictions on how
it is used. The trend in animation has been towards interactive scene description,
based on the argument that animators are artists not programmers [WW92|. This
tactic widens the user base of the software and virtually anyone with a computer
and the right software can animate characters [Mae96]. However, complex scenes
consisting of hundreds of primitives and the same order of types of interactions
would be tedious to set up interactively. Programmers on the other hand (as
opposed to animators) want freedom to use systems in the most inventive and
convenient manner, a philosophy adopted by MAVERIK which does not enforce
specific data representations on the user. A good way to achieve this is by max-
imising customisability and extensibility.

Many graphics systems ranging from animation to rendering packages use
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SDLs. A survey of such software reveals that the languages available vary con-
siderably in their elegance and sophistication, but all share one common feature;
they are often written from the ground up specifically for the application. A good
example of such a language in the public domain can be found in Craig Kolb’s
raytracer RayShade [Kol92] which provides a powerful parser using the language
generation tools lex and yacc [LMB92|. It would appear attractive to imple-
ment something similar in order to program simulations but this is a complex
task. The language would ideally require support for OO concepts which are not
easily implemented. Many suitable languages already exist so why “reinvent the
wheel”?

This brings us to the important question: what criteria should a suitable
SDL possess? In answer to this, it must be easy to learn, possess high level
concepts, be extensible and preferably enable rapid development of applications.
These criteria imply that a scripting language such as Tcl or Perl may be an

appropriate choice.

3.3.1 Scripting languages

Many VR systems incorporate a limited degree of scripting in order to play a
simple animation invoked by some event. In general these scripts are used purely
to choreograph a particular motion sequence of an object. An elementary level
of interaction is possible within this context because the script is driven by the
VR system to perform a specific action, such as flexing an arm. The scripting
languages discussed in this section are much broader in their scope than the more
traditionally used VR languages. There are many reasons for using a high level
scripting language in VR, but the most compelling is being able to control a scene
through a full and mature language. In other words, the VR system is driven by

the scripting language, this approach offers a much greater degree of flexibility in
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the types of complex behaviours which can be simulated.

High level scripting languages are typically interpreted and are designed for
gluing together components written in system programming languages (SPLs)
such as C or C++. Being weakly typed they can easily be used to build connec-
tions between different software components thus enabling rapid development of
applications.

Modern scripting languages are a far cry from their ancestors and are finding
more wide-scale applicability. John Ousterhout [Ous96] discusses this general
trend towards wider scale use, the merits of an untyped language and the appli-
cations for which a scripting language is suitable.

He suggests that “Yes” answers to the following questions indicate that a

scripting language will work well for a given application.

Is the application’s main task to connect together preexisting components?

Will the application manipulate a variety of different kinds of things?

Does the application include a graphical user interface?

Will the application’s functions evolve rapidly over time?

Does the application need to be extensible?

Scripting languages and SPLs complement one another because they are designed
for performing different tasks. Complex data structures and functionality are best
achieved by coding in a SPL whereas integrating two very different tools together
is well within the capabilities of a modern scripting language.

The applicability of scripting languages has grown of late due mainly to the in-
creasing performance of machines, better scripting languages, the need for graph-
ical user interfaces and the growth of the Internet. Ousterhout argues a silent
“scripting revolution” is occurring of which even the participants are unaware.
He believes that scripting languages such as Perl and Tcl are going to bring about
a new way of programming. They enable a significantly high degree of code reuse

due to the high degree of interoperability supported by these languages.
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Building an application by reusing components allows rapid development of
applications provided good software actually exists. This feature of modern
scripting languages is attributable to the weak typing that exists in these lan-
guages. Use of a weakly typed language is the easiest and most convenient way
to glue together very different components each possessing their own data struc-
tures. Figure 3.13 correlates the capabilities of languages with the degree of typing
found in them. Weakly typed languages are well suited to our SDL because they

enable rapid construction of data structures and easy manipulation of data.
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Figure 3.1: A comparison of various languages based on power and their de-
gree of typing

It is generally accepted that there is an extra performance penalty incurred
when using a scripting language. This is due to the fact that such languages are
generally interpreted and each call in the scripting language often corresponds to
at least one call in a SPL. The extra performance overhead is not considered to

be a real concern here, as the performance critical simulator is written in a low

3Reprinted from Additional Information for Scripting - White Paper [Ous96].
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level language and a relatively small number of scripted instructions will typically

be executed per frame.

Scripting and objects

A convincing case can be made for using an object oriented language for scene
description, because users building physical models to simulate may intuitively
think in terms of the components which make up the scene. Therefore, it is
natural to provide a direct mapping between real objects and conceptual objects.
For example, if a user wants to create a body composed of ten particles, it would

be quite natural to simply say
new body(10) ;

However, most object oriented languages are strongly typed and as such do not
provide a simple means for using powerful components built at a lower level.
A number of high level scripting languages provide support for object oriented

programming together with the advantages offered by weak typing.

Choice of SDL

Ousterhout argues that possibly the two most powerful scripting languages readily
available are: Tcl and Perl [Ous94, WCS96] We chose to use Perl because scripts
are in fact fairly simple to write and the current version, Perl 5, supports ‘Object
Oriented’ concepts which most importantly can be easily laid over C or C++
equivalent data structures.

The choice between Perl and Tcl really is an arbitrary one as they compare,
feature for feature, very well with each other. If a new version of Perl has a
unique feature then it is usually incorporated into Tcl and vice versa. Perl’s

main strength over Tcl lies in its object oriented capabilities.



CHAPTER 3. SOFTWARE ENGINEERING CONCEPTS 89

Perl 5 provides an unusual mechanism for OO programming, but this is at-
tributable to the desire to provide this facility with little additional syntax. Mod-
ular development already exists in the form of packages, which provide an environ-
ment for data and function hiding. To access them, they must either be exported
from the package or an external function can make a direct call to the function.

For example
chain: :build_me() ;

The function build_me can be viewed as a method inside the package chain.
These bear more than a passing resemblance to C++ static method calls*, which
can be argued as a benefit to programmers familiar with this syntax.
Furthermore Perl supports a powerful standard (called Perl XS) for compo-
nent integration enabling us to extend the language and support our framework
through a full and complete language. The merits of this choice could be debated
at great length but the specific high level scripting language chosen ultimately

comes down to personal preference.

3.4 Summary

To summarise, we have argued a case for using an OO approach to implement
the low level simulator based on the belief that simulator concepts and building
blocks for constructing physical models can be intuitively represented within this
paradigm. The need for a component framework for physically based modelling
in VR has been discussed and motivated; both in terms of the benefits offered by
such frameworks and in terms of the current limited availability of middleware
in this area. Finally the use of a high level scripting language to integrate and

provide component functionality has been outlined.

4 Also referred to as class methods in some languages.



Chapter 4

Iota: A framework for physically
based modelling in VR

n this chapter the requirements for the lota framework and an overview of the
I framework is given. The requirements for the framework are based on concepts
and the state of the art research described in the previous two chapters. We take
a top down approach to describing the framework, beginning with a section that
presents a high level view of the architecture, followed by a detailed discussion of
individual components in the system. Finally a discussion on the use of a high
level scripting language to integrate the components is presented, with particular
emphasis on the ease and limitations of integrating new components into the

framework.

4.1 Requirements capture for the Iota frame-
work

Requirements capture for the Iota framework was carried out largely through a

survey of current systems available which support physically based modelling at

90
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the middleware level. Furthermore, discussions with a number of researchers and
developers in the field! helped to influence the final architecture for the system.

We argue that a wide range of rich and complex behaviours are valuable
contributory factors towards the sense of presence that a user may experience
while inhabiting a virtual environment. The following abridged quotation from

Slater [SS00] addresses this sentiment:

Imagine that you are in a park in the sunshine. You are walking
through the park, perhaps admiring the trees. A particular tree is
interesting, and you begin to move closer to it. As you get within a
certain distance there is a moment when you become aware that in
fact the ‘tree’ is flat - a virtual cardboard cutout. You recall that
you're actually in the laboratory, wearing a head-mounted display

(HMD), and it is the middle of the night.

The passage evocatively conveys the essence of immersion and the factors neces-
sary to maintain the illusion. It implies that the richness of the park, the trees,
the sunshine all contribute to the illusion until a point at which the image is
shattered by the realisation that a particular tree does not appear to be real
enough. Slater’s scenario of a virtual park so enticingly real that the user forgets
they are in a laboratory, focuses on three factors related to presence; richness of
behaviour, image lag and disturbance from external stimuli. The first time his
scenario is shattered as a result of a lack of richness in the environment. In later
unquoted paragraphs the illusion is destroyed due to the image lagging behind
the head movement of the user and later still it is due to an interruption from
the building superintendent.

Although it is not easy to quantify how much rich behaviour contributes to

the sense of presence in a VE, it is generally accepted that it is valuable to try

!Personal communications: Francois Faure, Stephen Pettifer, Daniel Kidger and Gary Powell
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to incorporate complex behaviour in VR applications. Logan et al. [LWA94]
present a survey of simulation techniques and conclude that VR represents a new
application area for several techniques traditionally associated with engineering
and non-real time animation applications. Pettifer [Pet99] proposes a framework
for incorporating rich behaviour into distributed environments. Furthermore,
there is evidence that rich behaviour can contribute to the sense of presence,
for example the looming response described by Slater [Sla99] where participants
know that there is nothing there but they still duck as a object flies towards
them. Therefore we can conclude that it is justifiable to support rich behaviour
in virtual environments and that a framework for physically based modelling is
of value.

Recall from Chapter 2 where we highlighted the lack of systems which use a
hybrid approach for physically based modelling in animation. This was further
developed in Chapter 3 particularly with reference to the state of the art systems
in virtual reality. We also argued that a hybrid approach is valuable because it
enables a broad class of physical models to be simulated ranging from flocking
behaviour, fluid behaviours, dust, powders, fire, firework displays, to soft mate-
rials and articulating snakes. Based on this we consider the first requirement of
the Tota framework to be that it should support a hybrid approach to physically
based modelling in VR. In order to achieve this, a purpose built simulator must
be implemented.

Clearly for any VR system there are real time performance constraints, so
we use this as a basis for the second requirement of the Iota framework: the
ability to manage the complexity of simulations. This is justified by Barfield and
Hendrix’s [BH95] study of the effects of frame rate on presence in which they
show that consistent frame rate is necessary. We argue that in order to main-

tain a consistent frame rate the complexity of simulations must be appropriately
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managed otherwise certain frames could take longer to compute. Ellis suggests
that an optimal degree of presence can only be maintained through trading off
factors which contribute to presence against one another [El196]. We therefore
consider it appropriate to trade off some degree of fidelity of simulations against
performance, as long as the degradation in fidelity of the simulations cannot be
perceived by an average user.

The third requirement for the Iota framework is the provision of adequate VR
functionality. In Chapter 3 we described a number of systems or libraries which
provide varying degrees of functionality for physically based modelling in VR.
We also highlighted the fact that the more general systems have limited support
for VR functionality largely because many were developed from an animation
direction (cf. Tabule, MathEngine, AERO, Sced). The Iota framework should
support the basic functionality (such as navigation and spatial management)
necessary for VR because it is intended for use in this field.

A need for a full, complete and easy to use high level scripting language was
also motivated in Chapter 3 together with the requirement that low level simula-
tor and VR functionality should be supported through this language. This means
that it should be possible to implement applications fully within this language.
Schmalstieg and Gervautz [SG95| propose a virtual environment architecture in-
habited by avatars which are controlled by users across a network. They use
a high level scripting language (Python) to control and customise actors imple-
mented in C++ and motivate this by stating that Python is more powerful for
specifying customised behaviour of actors making the construction of applications
fast and simple. In particular, they benefit greatly from the fact that Python is
cross-platform and so can be used to pass messages (methods) between systems.
Furthermore, they were able to modify the behaviour of actors at runtime, an-

other trait of high level scripting languages. Although the context of the lota
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framework differs from theirs, the points they make to justify their approach are
relevant and support our arguments for high level scripting.

An early system which used a limited degree of simulation in VR was NPSNET
[ZPF193]. Michael Zyda et al. describe this system within the general context of
the software required for generation of virtual environments. NPSNET embodies
some useful concepts, in particular Zyda et al. make a convincing argument to de-
velop a strong foundation of software upon which applications can subsequently
be built. They identify the six core elements of a VR system as being: navi-
gation, interaction, communication, autonomy, hypermedia and scripting. This
supports the idea of implementing a component framework which provides VR
functionality together with scripting and simulation. Furthermore, the discussion
on component frameworks in the previous chapter highlighted the benefits and
disadvantages of the white box component based approach. It was argued that
the advantages (customisation and extensibility) offered by this approach out-
weigh the disadvantages and so the final requirement for the Iota system is that
it should be implemented as a white box component framework.

Now that the requirements of the overall framework have been identified it is

appropriate to consider a high level view of the architecture of the lota framework.

4.2 Overview of the Iota framework

The Iota framework consists of a tightly coupled simulator engine/complexity
management module and a VR component. A high level view of this architecture
can be seen in Figure 4.1. The simulator is purpose built and supports a hybrid
particle-rigid body modelling approach. VR functionality is provided through
MAVERIK and integrated into the framework. Above the low level component
layer lie Perl XS stubs through which component functionality is made visible to

the Perl scripting language (Appendix D contains a short tutorial which describes
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how XS files are used). On top of this layer are a collection of Perl modules to
support model construction, rendering customisations and any other user cus-
tomisations. The user scripts are implemented in Perl and make calls to custom
functionality from the Perl layer as well as low level functionality through the
Perl XS layer. Interfaces to all components are supported through the Perl XS
stubs. This protects the user by only making available functionality which should
be accessed. Low level simulator and MAVERIK calls may make some callbacks

into user code or custom modules which exist as Perl scripts.

------ User Script  <)-------_ Tota Scripting
: Language API
& Custom Modules
/ Builder Shapelib Custom ‘\
/ Module Module Modules v
I'. v l v l v ;' Interface Code
\ [ (Xs)
\‘ "‘_ _______
. .V v v Low Level
Slmlqator Complexity VR Component o Components
Engine
Management
Module

- A

Figure 4.1: The Iota framework for physically based modelling in VR

A rich common data format is used within Perl to describe the simulator
models together with their graphical representation. This has the benefit that
the same data structure may be used to store data for both the simulator and

MAVERIK rather than having to maintain different data representations. It is
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helpful at this stage to examine each low level component in turn and then discuss

the integration of these into the overall framework.

4.3 Simulator component

We have seen in Chapter 2 that many types of interacting particle and rigid body
systems exist independently, but there is a missing link: there are few true hy-
brid models. The objective of simulation for general purpose computer graphics
is clearly different to molecular modelling or fluid dynamics applications, so some
optimisations can be made at the cost of accuracy, but the underlying theory is
essentially the same. Particularly in terms of managing the complexity of physi-
cal models and reducing the simulation to that of the simplest model required to
achieve the desired behaviour. This section describes the implementation of the
simulator. Moreover, due to the interactive nature of the simulations, the scene
structure may be very dynamic so various issues regarding connecting and dis-
connecting particles are highlighted [GM98]. Examples are presented throughout
this section to help clarify the concepts.

We take a top down approach to describing the simulator. First an overview
is presented together with a coverage of the notation required to understand the
examples presented in this chapter. A specific example of a system one may
wish to simulate is given and attention is drawn to the problems associated with
computing its motion. This leads on to a discussion of the core mathematics
required to simulate such systems. Finally specific implementation details and

algorithms are described.
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4.3.1 Overview of the simulator

A high level overview of the core simulator is shown in Figure 4.2. Essentially the
core simulator consists of a block which advances a frame by computing required
forces and advancing a time step in a simulation. If any events have caused a
change in the scene graph then a scene modification block performs some pre-
processing to reconstruct the new scene. The techniques used in the simulator
are described later in this chapter. It is important to note that advancing a frame
purely means moving forward in the simulation by an arbitrary time step, the

duration of which can be adaptively modified.

g

Scene Modification
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0 Count Unknowns
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Integrate Equations
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Figure 4.2: Overview of the flow of control in the simulator

Advancing the frame involves a number of different types of computation.

Recall that the physical model incorporates a particle system and articulated
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Figure 4.3: Two types of bonds

rigid bodies so a scene could consist of any number of interacting particles or
articulated rigid bodies. Indeed, interactions may also occur between particles
which coexist within articulated bodies.

At this point it is worth digressing a little to consider the conventions adopted
to graphically represent various components in the scene. The conceptual building
blocks used to construct scenes to be simulated, and the conventions adopted to
represent them are described. We start by presenting point masses or particles,
a number of which are shown in Figure 4.3, and are the basic building blocks
available to the user. Although particles are technically ‘point masses’ and should
therefore be represented as dots, this is unhelpful in terms of visualising them.
Hence, the radius of the sphere is used to illustrate each rendered particle to give
an indication of its mass in a simulation.

Particles may be connected together using bonds. Figure 4.3 shows two dif-
ferent types of bond. The first, shown in part (a), represents a rigid bond which
cannot change length. The second shown, in part (b), is a flexible harmonic os-
cillator or ‘spring-like’ bond which exerts a force on the two particles to which it
is connected. Such bonds can be modelled as force functions.

Now consider a system, a collection of entities which only interact with them-
selves, as shown in Figure 4.4. Hinge particles are represented by a black dot.
These are connections about which rigid sections are free to rotate. The five
particles P3, P4, P5, P6 and P7 are connected using rigid bonds and thus move
in unison. Such an entity is referred to as a body; each separate body will be

labelled by convention A, B,C...and so on.
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Figure 4.4: An example system of particles

Henceforth, visual clarification of body boundaries is added in forthcoming
figures as shown in Figure 4.5. A particle always belongs to a body, even if it is
the only particle in it. Particles within a body conform to the mathematics given

in §2.4 (p. 43).

Figure 4.5: Boundaries used to delimit bodies

Now that the conceptual entities in the scene shown in Figure 4.5 have been

established, it is possible to consider what needs to be computed to simulate the
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motion of such an entity.

It is clear that the bodies A, B, C', D and E are rigid bodies and so their
velocity vectors could be computed using the centre of mass as though they were
big particles. However, this specific problem is not quite so simple, particles P3
and P7 are hinges so some special computation is required to keep them from
falling apart. There is an inter-dependency between bodies A, B and C caused
by the forces exerted on them by the hinges. The problem appears to require
simultaneous solution. Moreover, between particles P8/P9 and P10/P11 force
functions exist which must be taken account of too. What would happen if a
force function also existed between P8 and P27 It soon becomes clear that it is

not easy to describe the motion of such systems.

4.3.2 Core mathematics

Recall from §2.5 (p. 45) that a numerical integration is required to advance a frame
in the simulation. An Euler algorithm was chosen because the trade-off between
performance and accuracy was considered to be favourable. For interactive VR
purposes the best possible performance is required, at the expense of some loss of
accuracy. Given that the average user is unlikely to be able to notice any drift in
the solutions and the overall motion remains plausible, the performance issue is
of utmost priority. Equation 4.1 is used to compute the linear motion of a body

A and is the Newton Euler formulation:

Ay, = FAM.ZI
Vi += Ay
Py += V,

or simply: P4y += (Va+=F4M;") (4.1)
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Similarly, Equation 4.2 shows the Newton Euler formulation for rotational mo-

tion.
N N
Ay = I fanA(Pan—Pa)
n=1
Vi += Ay
N N
P, = A (VA+ =" fan A (Pan — PA)) (Pan—P4) (4.2
n=1
+ Py

In both cases integration is approximated using addition. Hence the linear accel-
eration of the body is calculated from A = F/M and subsequently added to the
current velocity which is in turn added to the current position of the body.

In principle the mathematics for rotation is the same, but using corresponding
quantities. For force we use torque, angular acceleration corresponds to accelera-
tion, angular velocity corresponds to velocity and angle (or direction) is analogous
to position.

A convention has been adopted for representing rotational quantities using a
curved arrow, as in Kv A- Rotations take place perpendicular to this vector. To
perform a rotation about it, a conversion is made to an equivalent transformation
matrix using the method described in §C.1 (p. 209).

The magnitude of the rotation vector \?A is proportional to the rotation angle.
These angles typically correspond to rotations (in radians) which are too large,
so a constant of proportionality ¢ is introduced to avoid too much rotation in any
one frame. Typically a value of ¢ between 0.3 and 0.9 was found to be satisfactory.

Equations 4.1 and 4.2 have been combined into Equation 4.3 resulting in the
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equation used to compute the position of every particle per frame.

~ N
p'A.n = A <VA+ = CI;ll Z fA.n A (pA_n — PA)) .(pA_n — PA) (43)
n=1

+ (VA-l- = FAMgl)

+ Py

Most of the terms are common to all particles in a given body and these need
not be recalculated for each particle.

In the real world objects experience a resistive force while travelling through
a medium, such as air or water, which causes them to lose energy and slow down.
This is called damping and has to be reflected in physical simulations otherwise
they will not behave as we would expect. A damped body experiences a force

which acts along V, the velocity of the object.
Fresisti'ue = —kV (44)

where £ is known as the mechanical damping factor, and is dependent on the
fluid medium and geometry of the object. A similar end effect was achieved by
applying damping at the end of each frame through multiplying velocities by an
arbitrary value between zero and one. A high degree of damping corresponds to
values close to zero, while negligible damping can be achieved with values such
as 0.95 or 0.995.

Now that a particle’s equation of motion has been derived, it is possible to
use this as a building block for the simulator. A need arises to implement hinges

between bodies, so we will discuss how this can be achieved.
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Hinging between rigid bodies

Enhancing the simulator to respect the notional ‘sharing’ of particles between
bodies and so provide ‘hinging’ adds a great deal of complexity to the model
described. The primary reason for this is that the particle which is hinged will,
by Newton’s Third Law, exert forces to try to match all the forces applied to it.
The net internal forces exerted will be zero. Where there is more than one hinge

near another, the forces exerted by each will have dependencies on one another.

Figure 4.6: Initial state of the system before the constraints are met; notice
the curved arrows which indicate that forces are required to bring
the bodies together at the hinge

For points in a hinge to remain coincident they must all arrive at the same
position on the next frame, as calculated by Equation 4.3. For example, in
Figure 4.6 a necessary requirement to construct and maintain the hinge constraint

at P3 which joins bodies A and B is that

P43 = D'z which is better expressed as (4.5)

PIA.3_P,B.3 =0 (4-6)
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and so after expansion becomes

A <\?A+ =cIy' i": fan N (Pan— PA)) (pas—Pa) (4.7)

n=1

+ (Va+=F M)+ Py
~ N
- A (VB+ =cIz' Y fpn A (PBa — PB)) .(pB3 —Pp)
n=1
— (Vp+=FpMy')+Pg

=0

The particles A.3 and B.3 will exert opposing, but currently unknown, forces
upon one another. A similar set of equations can also be derived between the
particles B.7 and C.7. Hence there are two simultaneous equations which hold
true for the bodies A, B and C'.

The two sets of particles will exert additional forces to pull themselves to the
same position. It is these forces which must be calculated before the motion of
the bodies can be calculated. In the general case this is too complicated to solve
analytically, so the use of a solver such as the one which will be described in §4.3.2
is required.

A number of observations may be made about the number of simultaneous
equations which will be derived for a system: each hinge with n particles will
contribute n — 1 simultaneous equations and n — 1 unknown internal forces. Fur-
thermore, note how no constraint forces are exerted outside of bodies A, B and C
and so the two simultaneous equations may be solved in isolation. If there were
additional sets of hinges elsewhere in the system, for example another three, then
it would be inefficient and more challenging to solve five sets of equations with
five unknowns when it is possible to solve separate problems with two and three
unknowns.

To support this notation, a novel technique of maintaining data structures was

adopted in this work which keeps unrelated sets of bodies in separate ‘containers’
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known as articulates. An ‘articulate boundary’ has been shown using dotted lines

around the bodies A, B, C, body D and body E in Figure 4.6.

Using a solver

A great deal of research has been invested in designing algorithms which can
find solutions 7,y to a set of simultaneous equations Fj(z1,9,...,zy5) = 0.
Well-known FORTRAN numerical solver packages include LINPACK [DBMST79],
Lapack [ABB*95] and NAG [NAG]. These libraries include solver algorithms
which use general methods but have been specifically optimised for special cases.
More recently Diffpack [Lan96] has been developed by the University of Oslo as
a C++ library which provides a class hierarchy of solvers.

Press, Teukolsky, Vetterling and Flannery [PTVF92] make the dramatic state-

ment in their book

There are no good, general methods for solving systems of more
than one non-linear equation. Furthermore, it is not hard to see why

(very likely) there never will be any good, general methods.

This quotation is defended with an example in which the two Equations 4.8a

and 4.8b need to be solved simultaneously in two dimensions.

flz,y) =0 (4.8a)

g(z,y) =0 (4.8b)

The functions f and g have no relationship to each other, so there is nothing
special about any common points in terms of either function. Press et al. show
that to find all common points requires mapping out the full zero contours of
both functions. They also highlight the fact that the zero contours will have an

unknown number of disjointed closed curves. How can one guarantee that all
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these disjoint regions have been found? They go on to say that for problems
in N dimensions, points mutually common to N unrelated zero contour surfaces
each of dimension N — 1 have to be found. Based on this argument they say
that additional information about the problem is always required to facilitate
root finding. While the situation in general is quite bleak, equations which are
continuous, ‘well-behaved’ and for which the vicinity of the solution is known in
advance, solvers can generally find a solution.

There are a number of multidimensional root finding methods suitable for
solving simultaneous equations of the type we wish to solve. Some of these
methods are more complicated than others, perhaps optimised for particular cases
and may be more robust (possibly at the expense of speed). Again a trade-off is
involved in deciding upon which particular solver to use. Two general purpose
root finding methods which are believed to be suitable are outlined below. The

choice between them is arbitrary since they are relatively similar.

Newton-Raphson Method An excellent insight into Newton-Raphson and re-
lated methods is presented in [DS83, PTVF92] and paraphrased in Ap-
pendix C.4. They deal with its stability and ways to improve its conver-
gence. This method is considered to be the simplest multidimensional root
finding method. It gives a very efficient means of root finding if seeded
with a suitable initial guess. The best way to visualise how it works is as
an extension of the Newton-Raphson algorithm in two dimensions. Instead
of the gradient simply being a scalar value, a matrix of (partial derivative)
values is used to represent the gradients in each dimension in relation to
each of the unknowns. This matrix is known as a Jacobian matrix. From
this a new set of possible values for the unknowns may be calculated which
bring the evaluated equations closer to zero. Naturally the algorithm has a

number of advantages and disadvantages.
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Advantages

e Quadratically convergent from good starting guesses if Jacobian

is non-linear.

e Exact solution in one iteration for an affine F'. That is, in cases
where a straight line along the gradient passes through a solution,

the solver will find the solution on that iteration.

Disadvantages

e Not globally convergent for many problems.

e Can spectacularly fail to converge, indicating that a root may not
exist in the vicinity.

e Requires calculation of Jacobian for each iteration.

e Each iteration requires the solution of a system of linear equations

that may be singular or ill-conditioned.

Shortcomings in Newton’s algorithm may be largely overcome when it is

used in conjunction with other techniques such as a line searching algorithm.

Broyden’s Method is known as a quasi-Newton or secant method. Essentially,
the algorithm is analogous to Newton’s method but substitutes an approx-

imation to the Jacobian matrix [DS83)].

The Newton-Raphson method is used in our simulator because it was found to be
the simpler of the two methods outlined above. Broyden’s method may perform
better than Newton’s method in certain circumstances however, it loses that edge
when its estimate of the Jacobian becomes too inaccurate.

Each iteration of the solver tries to obtain a better set of unknown input
values by inverting the Jacobian matrix and multiplying it by —F', a vector that

represents how far we are from the solution. This gives a vector, known as the
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Newton direction. Travelling in the direction indicated by this vector ideally
moves us closer to the solution. At each iteration of the method, the Newton
direction should improve the chance of converging upon a solution.

Convergence of Newton’s method is improved substantially by incorporating a
line searching and backtracking algorithm. It is possible to overshoot the solution
by taking a full Newton step, so the Newton direction vector is adaptively scaled

to find an optimal distance to travel along the solution space.

4.3.3 Simulator classes

The simulator consists of a number of classes (in the OO sense) which will be
described in this section. Before a brief description can be given of them, let us
clarify the simulator representation of a particle. To address the need to allow a
single particle to be associated with multiple bodies in a hinge, a data structure
is required for each member that makes up the particle. Within the simulator,
these are known as points. One of the points in a hinge particle is arbitrarily

chosen to be the master point, the role of which is described later in this section.

Point_Local is a data structure containing the attributes which are ‘per-point’,

such as its position, the net force acting upon it and its parent body.

Point_Shared is used to hold ‘per-particle’ data: primarily particle mass and a
pointer to the master point. A particle’s colour and other similar attributes

may also be held.

Point is a member of a ring which conceptually represents a particle. Each
point has its own Point_Local and shares a Point_Shared with all the other

members which make up the particle.

Body is a container for points. Most of its attributes are recomputed each frame:

total Mass, Inertia, Position of COM, total Force/Torque, body damping
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etc. In addition, it contains a list of CBonds described later.

Articulate is a container for bodies. Moreover, it inherits a solve method from

the Solver class because it is the domain in which the problem is posed.
System is a container for articulates and holds the gravity vector.

Bond is an abstract class which references two points. A virtual method must

be overridden describing the force function that it exerts on the points.

CBond Cosmetic bonds® can be used to display notional bonds which exist
within a (rigid) body. A representation of internal bonds in the simulator
may provides useful detail for visualisation purposes and will be illustrated

in Chapter 6.

Solver is a general purpose solver which uses Newton’s method for solving simul-
taneous equations. A single method is provided which attempts to find a
solution. Three methods can be overridden: number_of_equations which
returns the number of equations to solve, equations_evaluate to evaluate
the equations, and equations_jacobian which can be overridden if the

equations can be differentiated analytically.

Miscellaneous mathematics classes are used heavily in the simulator, pri-
marily for matrix and vector calculations. Both position and direction vec-
tor classes exist, as the two have different types of associated methods.
For example normalising and vector products apply to directions whereas

positions may be used in bounding box calculations.

A particle can possess a number of attributes: a mass, position, velocity, ori-
entation, colour and lifetime. This data represents the state of any instance of

the particle primitive. The fact that particles may be shared by several bodies

2These bonds are referred to as cosmetic because they do not take part in the simulation.
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means that some information must be maintained separately for each body that
a particle is a member of.

This could be implemented in any number of different ways, but the data
structure found to be most appropriate was a ring. All the points in a particle
share the data which is ‘per-particle’, and each has its own local data together

with a pointer to the next point.

Figure 4.7: Figure showing two points in a ring making up a hinge particle,
each with its own local data, and sharing global data (G)

The ring elements can be readily cycled to find all the points which belong to
the particle, and the membership to bodies may be examined in a point’s local
data structure. The shared data retains a count of the number of points which
reference it, and is released when the last point disappears.

One point in the ring is arbitrarily nominated the master point, and is given
a special significance when formulating equations to be passed to the solver. The
reason for this is that the constraint equations are generated by traversing the
ring elements. Each point is visited, together with the point adjacent to it and an
equation is built by subtracting the positions of these two points as was discussed
in §4.3.2. Since only n—1 equations are required for an n point hinge, an equation
is not constructed when the current point is the master. It is clearly necessary to
ensure that one, and only one, point in the ring is the master. It does no harm

to consider points which are not hinged to be in a ring by themselves. After all,
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they will generate 1 — 1 = 0 equations.

While the techniques that have been discussed allow for simulation of a system
to take place, it is still necessary to examine the internal representation of the
scene and more importantly how it can be manipulated before or during the

simulation.

4.3.4 Complexity management and interaction

Merely simulating the motion of objects in a VE is interesting, but not nearly
as useful as being able to interact with them, modify the model and watch the
simulation take form with different criteria. The difficulty with allowing any type
of user manipulation of the physical model used to represent an object, is that
it is impossible to predict what the user may wish to do. Potentially, a user
might want to move the object around, deform it, break it or attach something
else to it. Thus much effort was invested in developing powerful, robust scene
manipulation and restructuring routines. Furthermore the dynamic restructuring
routines can be exploited to manage the complexity of simulations. This benefit
will be illustrated in the case studies in the following chapter.

Scenes are represented internally as a tiered (upside-down) tree with a system
object as its root, followed by articulates, bodies and finally points. We can
represent Figure 4.6 (p. 103) as the tree shown in Figure 4.9 via an intermediate
step shown in Figure 4.8. It is critical for correct solver behaviour that the
articulate containers have the right bodies beneath them. If there are too many
then the solver will not optimally converge towards a solution, too few and the
scene will not behave correctly.

Manipulation of the tree is therefore considered sufficiently complex to ne-
cessitate the creation of high level methods to perform the manipulation. These

routines are described here, while some of the subtle details are discussed in the
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Figure 4.8: Rearrangement of Figure 4.6 into start of hierarchy

System

T m v e
008 o000 BO 4o O

P1 P2 P3 P3 P4 P5 P6 P7 P7 P8 P9 P10 P11
Particle/ Point

Figure 4.9: Rearrangement of Figure 4.8 into hierarchy
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Method Applies Action
to
Public
Index system, Since systems and bodies (and articulates) are effectively
body containers, they provide a method for indexing member
objects
Create system, This method creates a new instance of an object. In the
body, case of bodies and particles it is necessary to register them
particle with a parent
combine | two Combining particles has been given different behaviours
particles | depending on the relationship between the two particles,
or bodies | and is expanded upon in Table 4.2
separate | two Separating particle has been given different behaviours
particles | depending on the relationship between the two particles,
as shown in Table 4.3
Destroy | system, This method will remove an object and its children
body,
particle
Private
validate | System This method is used internally to traverse the object tree
to check for inconsistencies. It is not intended to be called
in the production version of the simulator, but is useful
for checking for programming errors as methods are de-
veloped.

Table 4.1: Methods for manipulating scenes

next section.

Scene manipulation is carried out through the use of dynamic restructuring
methods, shown in Table 4.1, which allow the scene graph to be modified at
run time. From the complete list of methods that may be applied to objects in
a scene, the two most important routines can be used to dynamically combine
and separate points. These routines take two points as their arguments, but

their behaviour differs depending on their relationship. There are four possible

classifications of relationship between a pair of points.
Scenario 1 Both points passed refer to the same point.

Scenario 2 They belong to the same body.
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Scenario 3 The points are members of the same (hinged) particle.

Scenario 4 The pair of points are from two different bodies and are unrelated.

Tables 4.2 and 4.3 show the behaviour of these routines for each scenario. Notice
that according to scenarios 2,3 and 4 in Table 4.2 one of the points involved in
the combine is always destroyed. This is a potential source of problems because
the user may have C++ references to particles which will no longer exist. This
problem can be solved in C++ but we catch and handle it through the scripting
language instead.

Examples of successive combines and separates are shown in Figures 4.11
and 4.12. Each subfigure follows from the previous example. This behaviour is
very powerful because it enables these general routines to always be called in
exactly the same way, but achieving very different effects. combine in this sense
has the effect of making the relationship between the two points closer, separate

has the opposite effect, as shown in Figure 4.10.

separate

L

Single Point " Same Body " Points Hinged _ Points Unrelated

-

combine

Figure 4.10: Effect of successive combines and separates on points

An application of these routines is illustrated here by considering an example
scene which simulates a shoal of fish swimming in the sea. Suddenly, some of the
fish may decide to nibble on some seaweed. A subset of those feeding fish may
actually break off a segment and swim off with it trailing from their mouths. Such
a simulation has been implemented using lota and is reported in the following
chapter.

This could be achieved by simulating the shoal of fish as rigid bodies which

attract each other from the front and repel each other at the tail. The user may
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‘ Scenario ‘ Behaviour ‘ Figure ‘
Points are in fact | No action taken. N/A
the same
The two points One of them (the latter) will be removed. No further | Ppg/Pps:
are found to manipulation of bodies or articulates is required. 4.11(a)
belong to the
same body
Both points One of them becomes redundant and is removed, and | Pg7/Pc7:
belong to the the two parent bodies are subsequently combined (no | 4.11(b)
same particle articulate manipulation is ever necessary). The end
effect is to make a hinge rigid. Ordinarily the two
points combined will have the same position, so in
practice it is not possible to observe one of the points
being removed.
The two points This results in a hinge where the two points will now | Ppg/Phgs:
are from different | take on the attributes belonging to the former point. | 4.11(c)
bodies
Table 4.2: Scenarios for the combine method
‘ Scenario ‘ Behaviour ‘ Figure ‘
Points are in fact | A new point is created in the same body at the same | No change
the same position. [4.9]
The two points One of the points will be removed and recreated in Ppy/Ppio:
are found to its own (new) body and hinged. 4.12(a)
belong to the
same body
Both points One of the points will be detached from the ring. It | Pps/Pas:
belong to the is highly likely that a new articulate must be created | 4.12(b)
same particle to accommodate it
The two points No action required N/A

are from different
bodies

Table 4.3: Scenarios for the separate method
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Figure 4.11: Example of successive combines applied to a scene, Figure 4.9
shows the original scene graph
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(b)

Figure 4.12: Example of successive separates applied to a scene and follows

on from the final scene graph shown in Figure 4.11

control a driver fish which leads the shoal. Articulating chains may be used to

simulate the seaweed. Force functions can be specified to attract a set of fish to

the food and a combine call could be applied to attach them. A temporal event

could be activated to separate certain hinges in the chains and finally, the fish

possessing such segments of seaweed may be programmed to swim off on a set

path at the next frame.

One major feature of these routines is that they hide the articulate layer from

the user. This is because articulates exist only for the solver’s benefit, and their

explicit manipulation would be a hindrance to the user.
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4.3.5 Advanced implementation details

Whilst the combine and separate routines provide a natural way of manipulating
scenes, their implementation is far from trivial. To illustrate, this section will
focus on one of the separate scenarios described in the previous section. We will
study two hinged points which are members of the same particle being separated
(scenario 3), and belong to the structure shown in Figure 4.13.

Depending on the topology of the shape on which the separate takes place, it
is possible that this operation will result in the structure remaining a complete
entity, as in the example given. This happens because topologically the two points
existed in a cyclic configuration so after a cut, a single structure still exists.

Under different circumstances two entities may in fact result and so two sep-
arate articulates would have to be created. The challenge is to decide whether
one or two articulates will result from a separate call. Essentially, this requires
algorithms capable of determining the topology of the entity being manipulated.

Two algorithms are implemented to achieve this: A call is made to Algo-
rithm 1 which marks points that are in the same articulate as the point is passed.
Algorithm 2 can subsequently be applied to find bodies which might appropriately

need to be moved if the second point is no longer in the current articulate.

Figure 4.13: Will two articulates result from separating the two points?
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Algorithm 1 is called on the parent body of one of the points being separated.
It works by walking through the data structure ticking off an instance variable
per point, in the region of interest. Basically, this means that the algorithm flood

fills until it reaches a loose end or a point which has already been ticked off.

Algorithm 1 Algorithm to perform a recursive flood fill on all the points in an
articulate (Body: :validate flood)
Require: validate_flag

1: for all points in body do

2:  Flag point with validate_flag

3:  for all points in particle ring do

4: if point not flagged with validate flag then

5: Flag point with validate_flag {This is an important step to avoid
flooding coming back this way}

6: Make recursive call to parent body’s
validate_flood (validate_flag)

7 end if

8: end for

9: end for

Algorithm 2 performs the difficult task of redirecting the appropriate pointers
to refer to the correct parent articulate. It uses a similar flood fill algorithm to

identify which points have to be moved to the new articulate.

Algorithm 2 Algorithm to move separated bodies to a new parent articulate
(Body: :repoint_flood)
Require: validate_flag new_articulate

1: Unsubscribe this body from its parent articulate

2: Subscribe it to new_articulate

3: for all points belonging to this body do

4:  Mark current point visited

5:  for all points in point’s ring do

6: if point is unvisited and is flagged as being destined for new articulate
then

7: Mark this point as visited

Make recursive call to

this_point->repoint_flood (validate_flag, new_articulate)
9: end if

10: end for

11: end for

®
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Another issue which should be noted refers to the implementation of bonds
between particles or bodies. Although the simulator implementation must be able
to access the force acting on particles, to retain a high degree of customisability
it is beneficial to avoid having to implement each bond type within the simulator
itself. This is achieved using a generic bond class which contains a handle to a

function responsible for calculating the force exerted by the bond.

4.3.6 Solver convergence and verification

Since general purpose solvers still continue to suffer from convergence prob-
lems [PTVF92] it is necessary to describe the actions taken when the solver
is unable to return a solution. Furthermore, it is important to verify the results
returned by Iota’s solver in order to gain some confidence in the simulations.

There are two well-known situations in which general purpose solvers can
fail to return a satisfactory solution to the constraint problem posed. These are
known as singularities and ill conditioning, and are discussed in turn.

A determinant of zero is indicative of a singular matrix which cannot be
inverted. A singular Jacobian can arise typically when links in an articulated body
align themselves or are fully extended as shown in Figure 4.14. In this particular

example, notice how the two COM’s and the hinge are coaligned. Rotating either

Figure 4.14: A fully extended articulated body

of the links will produce the same motion at the end of the articulate, so one degree
of freedom has been lost. The determinant may be used to identify convergence
problems caused by a singular Jacobian. Solutions to this problem typically

involve either never allowing the articulate to become fully extended, or using
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a different solver in the region of the singularity. Both of these solutions were
investigated but they did not improve convergence significantly enough to prove
satisfactory.

The second problem of ill conditioned equations arises under circumstances
where the possible solution leads to a near singularity. The distance to the solu-
tion may in fact be very small, but when the configuration of the articulate is close
to the singularity the determinant of the Jacobian is near zero. This leads to very
large and erratic Newton direction vectors which are not useful. This problem is
often solved by using a numerical method called a Singular Value Decomposition
which breaks up the Jacobian into three matrices. One of these matrices will give
insight into which terms of the Jacobian cause problems. These offending val-
ues should be zeroed so that their contribution is nullified rather than producing
large inappropriate values when their reciprocal is taken. While this tactic did
improve convergence it simply did not prove to be a robust enough solution.

The most successful ad-hoc methods to counteract convergence problems often
involve perturbing terms within the Jacobian if singularities or near singularities
are encountered [PTVF92]. Whilst these techniques greatly improved the success
rate for the solver, even a small number of failures can cause disturbing artifacts.
One example that illustrates this is a damped pendulum which on each swing
reaches a height less than that on the previous swing. On failing to solve, an
inappropriate force is provided by the solver which suddenly causes the pendulum
to gain energy and swing in an erratic manner.

The main contributing factor to failure to converge was found to be caused by
the rotational component applied to bodies. This is consistent with the discussion
above on singularities. Simply reducing the rotational contribution in instances
where the solver failed to converge, was found to dramatically improve the success

rate. This is guaranteed to find a solution, since in the worst case it will eventually
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reduce to the linear case which is always solved.

Experiments were conducted to obtain an idea of the point at which the
complexity of a constraint equation would cause the solver to fail to converge.
Typically chains of eight links or more started to exhibit occasional problems. To
put this into context, the solver is inverting and multiplying matrices with ap-
proximately 24x24 cells (three unknowns for each link). As the solver approaches
a solution to an equation involving such large matrices, any small numerical
inaccuracies will begin to accumulate over the hundreds of multiplications and
additions and introduce errors into the near zero Newton direction.

Now that solver convergence issues have been addressed, it is appropriate to
compare and verify the solutions returned by Iota’s solver with the University
of Oslo’s Diffpack [Lan96] solver®. To carry out comparisons and verification a
Diffpack test harness was implemented to solve our formulation of the equations
of motion for the case of a six link chain of length 50 units.

Our solver’s ability to meet a point to nail constraint was tested in an exper-
iment by scripting the top of the chain to meet constraints at regular intervals
along a Lissajous figure. The nail is moved to co-ordinates specified on the Lis-
sajous and the solver is challenged with meeting the new point to nail constraint.
The results achieved using both Iota and Diffpack’s solvers were plotted on the
graph shown in Figure 4.15. In all cases Iota’s solver matches Diffpack position
for position and this verifies that Iota’s solver works.

A further set of experiments were conducted in which the six link chain was
pinned at one end and allowed to fall under gravity from a horizontal position
(cf. chain case study in Chapter 5). Damping was minimised such that the chain
would swing for approximately two and a half thousand time intervals. The
position of the end point of the chain was studied to see how much variation

typically arises between Diffpack and lota simulations.

3 A version of Diffpack is available free of charge for non commercial use
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Figure 4.15: A graph showing a position for position match between Iota and
Diffpack when meeting a point to nail constraint

It was found that in general the solutions calculated using both solvers for
the given scenario were normally to within four significant figures. Approximately
twenty tests were conducted and the average displacement between each chains
end position was plotted against the frame number (or time interval) and this is
shown in Figure 4.16. Notice that the largest displacement, 0.00035, is unlikely
to be distinguishable on-screen. The fall-off in the graph is due to energy being
lost as a result of damping during the simulation.

This is to be expected, because the only real difference between the solvers is
the nature of the fall-back algorithms they use when they fail to solve. Floating
point inaccuracies between the two solutions will however accumulate over a pe-
riod of time, causing drift. It is well known that this drift between the two sets of
solutions caused by rounding errors can have dramatic implications, and an exam-

ple of this is shown in Figure 4.17. In this extremely rare case the end of the chain
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Figure 4.16: This graph shows the displacement in end positions of a chain
using Iota and Diffpack’s solvers

was seen to tip over in the Iota simulation, but not the Diffpack one. From this
event onwards (after around 400 frames) the simulations bore little resemblance
to each other; this phenomenon is predicted by theories of chaotic behaviour, in
which minor numerical differences may lead to divergent behaviours.

In fact, underlying the Newtonian behaviour of the simulations are a number
of other metrics which if plotted are chaotic, such as the number of iterations
taken to find a root for a given equations. Even the slightest deviation of the
requirements have a significant and unpredictable outcome. Even the simplest of
root finding problems equations can exhibit chaotic behaviour when solved using
the Newton Raphson method. In the subject of mathematics, a number of studies
of Newton Raphson in relation to chaos theory can be found [Gle88]. A common
root finding problem often used to illustrate this is the equation #® —1 = 0 in the

complex plane. If the number of iterations required to find a root for different
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Figure 4.17: A graph showing a case in which Iota and Diffpack’s simulations
diverge significantly

complex numbers is plotted as a colour an interesting fractal pattern emerges; an
example of this is shown in Figure 4.18.

In this case there are three solutions to the problem and these are located
in three regions shaded dark blue. The number of iterations required to solve
the problem is mapped onto colours ranging from dark blue to red. Dark blue
regions represent solutions which require one iteration and red ones represent
large numbers of iterations. Notice that at the boundary between the three
solutions instabilities occur. Travelling a short distance in these vicinities will
result in convergence of the method to any of the three possible solutions in
radically different numbers of iterations. Since the simplest of equations exhibits
such complex behaviour it is not unexpected for our formulation of the equation
of motion (Equation 4.3) to also exhibit chaotic instabilities in its solution space.

Given that a number of researchers use a Newton Raphson method [Fau99] (or
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Figure 4.18: Chaotic behaviour exhibited by Newton Raphson for a simple
root finding problem

a slight variation) for solving systems of non-linear simultaneous equations for
motion computation it is a reasonable method to use. However, two solvers
are unlikely to produce exactly the same simulations; there will always be some
divergence between solutions predominantly due to floating point inaccuracies
which can lead to chaotic behaviour.

It is true that in cases where Iota’s solver does not converge we use an ad-hoc
method after attempting a singular value decomposition. In this situation we are
introducing some error in the simulation and the results from then onwards will
diverge when compared with results from a solver which may resort to a different
method. However, to put this into context, this scenario may only arise rarely
within a given simulation (perhaps approximately once every 10,000 time steps)
and there is no guarantee that a different solver will be able to return a solution.
The experiments and discussions above show that the solver is generally reliable,
but in rare circumstances where there are many constraints to be met within the

same articulate it can fail to converge.
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4.3.7 Summary of the simulator engine

We have described the underlying model used together with the core mathematics
implemented. An insight into the implementation of the simulator with particu-
lar emphasis on dynamic restructuring routines, and the solver used to calculate
unknown forces has been given. Choices were made to compromise on fidelity of
simulations in favour of performance, these specifically involved using a Newton
Euler formulation of the equations of motion together with a projection method
for constraint satisfaction, and encouraging the use of dynamic restructuring in
order to manage the complexity of models to simulate. The idea of using artic-
ulates to simplify the problem of solving the motion of articulated rigid bodies
is introduced and described. In particular note that articulates can be used to
identify independent computations in a parallel implementation. Furthermore
the modular design of the simulator allows it to be incorporated with some ease
into existing systems which require the ability to perform dynamic simulations.
The solutions returned by the solver compared favourably with solutions com-
puted using Diffpack. Finally Algorithm 3 draws together the various parts of

the simulator algorithm.

4.4 VR component

Before discussing the reasons behind using MAVERIK as the VR component it
is important to answer the question: what is MAVERIK? This can be summed

up by the following quotation [HKG*98].

“MAVERIK is a toolkit for building Virtual Reality applications.
There are numerous other “VR tools” around, ranging from very

low level libraries of functions for drawing three-dimensional graphics
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Algorithm 3 Algorithm for the simulator

1:
2:
3:

11:
12:
13:
14:
15:
16:
17:

18:
19:
20:
21:

{Optional scene modification stage}
for all particles do
Initialise net force on particle to default force {The default force will prob-
ably be a downward gravitational force but there are other interesting pos-
sibilities}
end for
for all bonds in system do
Calculate force exerted by bond, and apply to points at each end
end for
for all articulates in system do
for all bodies in current articulate do
Compute body Inertia (Equation 2.28), Inertia=!, Mass (Equation 2.22),
Mass™!, Centre of Mass (Equation 2.14), Net Force (Equation 2.23) and
Torque (summed Equation 2.7)
Count Unknown Forces and form an array of points in hinges
end for
Populate array of unknown forces
Call Solver
for all bodies in current articulate do
for all points in current body do
Calculate point position from body’s linear and angular velocity {Body
linear Acceleration, Angular Acceleration, linear Velocity and Angu-
lar Velocity were calculated by the Solver, as indeed have the hinge
positions which can be skipped}
end for
Apply damping to body Velocity
end for
end for
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and interacting with peripherals, to fully-blown “systems” that de-
scribe virtual environments in much higher level terms. MAVERIK
lies somewhere in between these two extremes, and provides high per-
formance, customisable low level functionality within a higher level

framework”

MAVERIK is essentially a C library which can be used to construct single user VR
applications, and is implemented in a broadly OO fashion. This library is broken
down into two main components, the kernel and a set of support modules. The
kernel provides low level foundation routines (such as performing matrix trans-
formations) to modules and dispatches service requests to them. The support
modules provide routines for efficient input/output and display management.
Before we can explain the motivation for using MAVERIK it is necessary to
describe the essential components of a VR system. The debate regarding what
is and is not VR still continues on [Vin98|, but there is general agreement that a

VR system should feature, to varying degrees, the following:

e Navigation — a means of travelling from position a to position b in the

three dimensional virtual space.

e Interaction — enabling the user to affect the model of the virtual world

which they inhabit, for example selecting an object and copying it.

e Immersion and presence — recall that this was briefly mentioned in Chap-
ter 1. Immersion is not easily quantifiable, all that can be said is that it
contributes to the sense of presence. Immersion and presence are inextrica-
bly linked and currently various devices contribute to their enhancement.
The sense of presence can be increased by maximising user participation in
the environment and there is much scope for advances in software which

facilitates this.
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The motivation for using MAVERIK is largely twofold: firstly, it provides us with
the functionality which enables our environments to fit within the above definition
of a VR system. Secondly, all the routines required to navigate, interact and
drive VR hardware comprise a large amount of code and much effort has been
expended by the MAVERIK developers to supply an efficient resource. Moreover,
MAVERIK is developed locally, available as source code and is free under the
GNU General Public License (GPL). We do not claim however that MAVERIK
is the only VR system which can be used as the VR component in the Iota
framework, merely that it is convenient for our purposes. Now it is possible to
describe the architecture of the component together with the implications this

has in terms of supporting MAVERIK functionality through Perl.

4.4.1 The MAVERIK architecture

MAVERIK is implemented in a modular fashion such that the kernel and support
modules are loosely coupled, except in the case of the callbacks and object mod-
ules which are more closely related. This can be seen in Figure 4.19, which shows
how the support modules relate to the kernel and each other. The benefit of this
approach is that developers may add new support modules without changing any
of the existing code.

There is a great deal of co-operation between the kernel and support modules,
but generally not between modules themselves.
The kernel makes few assumptions about the internal representation of the virtual
environment which may vary considerably between different applications. Instead
it works with abstract objects and classes of objects allowing it to maintain
independence.

Support modules are required to register themselves with the kernel via an

initialise routine, and subsequently register specific objects with the kernel for it
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MAVERIK

Kernel

Figure 4.19: The MAVERIK architecture

to manage. In turn, the kernel will request services from external modules such
as to render the object or calculate its bounding box. Extensive use is made of
the callback mechanism so an overview is provided in Appendix B.

The data structure shown in Figure 4.20 is used to implement abstract objects
at the heart of the kernel. An object is a combination of data specific to that
object, and methods which are derived from the class to which it belongs. The
object data can take any form as far as the kernel is concerned, so object methods
must be able to convert the data into a type which is meaningful. The methods for
a class are contained in a two dimensional array of pointers to functions indexed
by ‘window id’ and ‘callback id’. The values of both these handles are allocated
by the kernel as modules are initialised. There is no distinction between system
callbacks and user defined callbacks.

Object and Callbacks modules provide default objects and their appropriate
callbacks for a large number of common primitives, polylines, textured primitives,

text objects, and composite objects. A small change was made to the MAVERIK



CHAPTER 4. I0TA FRAMEWORK 132

One per Object, Class Specific

=ty vOid * for personal use
One per Object | === e e e e e =e== '

data Window Id Z) Function for Class Methods

(#0 1in this case)

methods 012 3 ... ]

7 o

MAV Object -
o Q
w o
. 8
MAV Class 2
=

One per Class

Figure 4.20: The object data structure in MAVERIK

source code to support callbacks from MAVERIK into Perl (supplementary infor-
mation on callbacks into C and Perl can be found in Appendix B). This allows a
high degree of customisation to be made in the user’s scripts.

Finally note that this architecture is designed such that data describing the
environment is assumed to exist outside the MAVERIK kernel. Ideally the ap-
plications developer is encouraged to extend MAVERIK by tightly coupling new
software via the use of the void pointer provided in the object data structure.
This is an inconvenient consequence of using C to implement an object oriented
system. However for the purpose of integrating with the simulator we made a

choice not to follow this through, as we prefer to have our simulator data exist
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solely within Perl. One of the main reasons for this approach is that Perl ob-
jects are higher level than C structures, notably because they are associated with
types. While C and C++ are strongly typed, this is only a compile time concept,
so no type checking can occur at runtime.

Although it is easy to convert Perl objects to equivalent C ones simply by
discarding some information, conversions the other way require assumptions to
be made, likened to casting a void pointer to one of a defined data type. Currently
Perl is only called from C when callbacks to Perl are invoked. A problem therefore
arises if Perl is under the control of MAVERIK because any object passed from
MAVERIK require manipulation into the correct type. Furthermore, generic
objects represented by void * would need type information which is simply not
available from C at runtime. This reinforces the idea that it is simpler to control
low level code from a high level language than vice versa and complements the

idea of script driven VR.

4.4.2 Summary of the VR component

MAVERIK was chosen as the VR component because it provides the requi-
site VR functionality as is available locally as source code. Further to sup-
porting MAVERIK functionality through Perl some modifications were made to
MAVERIK to be able to provide callbacks into Perl. This mechanism enables a

high degree of customisations to be made from within the user’s scripts.

4.5 Custom modules

Custom modules can be implemented as Perl modules and included in the user

scripts. This functionality is in many ways similar to C include files but more
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powerful because of the high level routines available in Perl. Providing a place-
holder for user customisations in the design of the framework is advantageous
because it enables customisations to be made in a structured fashion. If it is
possible to rapidly prototype customisations in a simple and easy language then
there is little need for a developer to resort to editing low level code.

In the Iota prototype implementation two custom modules called builder and
shapelib are provided. The builder module constructs, using the internal rich
common data format, a selection of different types of models with a default
graphical representation; for example chains, rings and cuboids. By default,
particles are rendered as spheres, rigid bodies as cuboids or cylinders and flexible
connections are rendered as ellipsoids. Developers can create models in the rich
common data format. Alternatively the shapelib module could be used to import
and convert models from other sources. Currently, shapelib contains modules for
importing molecular and polyhedra data.

To provide a high degree of flexibility and customisability, the builder routines
are implemented using callbacks which have suitable defaults. A good example of
this is how visually different a chain can be made by overriding the representation
of a link: it can be made to look like a rope or a chain with interlocked links, as
will be shown later in §5.1.2 (p. 143).

Model construction in general is significantly simplified through the use of
the builder and shapelib modules and default graphical representations. Further
custom modules can easily be added at this level by a developer to support the
types of models that may be used in a particular application.

Another facility provided in the custom modules is a routine to compute an
initial transformation matrix for an Iota object. This is necessary because the sim-
ulator stores bodies made up of points which exist within world space whereas in

MAVERIK shapes exist in a local co-ordinate system. Consequently, MAVERIK
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shapes are centred at the origin of their own local co-ordinate system, are of
unit size and have a predetermined orientation when created. A transformation
matrix is required to size, position and map the shape into world space. Since
we wish to render bodies as MAVERIK shapes, some effort has to be invested
into calculating initial matrices for them and keeping them synchronised with
the simulator description. The initial transformation matrix is calculated using
Algorithm 8 in Appendix A to seed the newly created shape.

This routine is supported as a method of bonds and allows them to be queried
for a transformation matrix having the benefit that any desired MAVERIK shape
can be associated with a simulator bond. Moreover, the method allows shapes to
be resized by any chosen scalar values in the z and y dimensions. This achieves
a richness of visual effects as the graphical representation of a bond can be much

more complicated then the underlying model implies.

4.5.1 Summary of custom modules

Custom modules provide a mechanism for added user functionality in a struc-
tured fashion. In other words there exists an informal protocol dictating where
user customisations should generally be made. The Iota prototype currently con-
tains two major custom modules designed to simplify construction and rendering
of models. Furthermore, an additional customisation for computing an initial
transformation matrix to simplify initial placement of Iota objects is also sup-
ported. Due to the high level functionality inherent in Perl, custom models are
simple to implement by developers familiar with the language, but this holds true

for any equivalent scripting language.
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4.6 User scripts

The Tota API is intended to be natural, object oriented and easy to use. In
the Iota philosophy a developer will implement customised models suitable for
an application domain and then build the application in a high level scripting
language. This offers the benefits of rapid prototyping, access to a complex
low level simulator and VR engine though a defined and easy to use API and
protection from low level memory management problems. Recall that Schmalstieg
and Gervautz [SG95] use Python to customise avatar behaviour implemented in
C++ because it enables fast and simple construction of applications. This is very
similar to the Iota approach of providing low level functionality implemented in
C or C++ through a high level API and enabling further customisations in Perl

A developer would clearly need to devote some time to learn to use the API.
The amount of time it would take to learn to develop applications using the proto-
type implementation of Iota would depend largely on the developers background.
Attaining a suitable level of proficiency could take between two days to a week
approximately provided the developer is a proficient programmer.

Since a thesis is not an appropriate place to detail an API, a feel for the syntax
is given through examples of simple scripts in Appendix 5. There are three scripts

which show simple scenarios and do not make use of the builder routines.

4.6.1 Summary of user scripts

An OO paradigm was regarded to be suitable for describing concepts in virtual
worlds because it is intuitive. High level scripting languages can provide these
concepts together with an easy to use API because they are weakly typed, inter-
preted and do not expose the user to low level memory management. Perl can also

provide equivalent functionality to C/C++, but without the need to recompile.
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4.7 Integrating components

Both the simulator component and MAVERIK were integrated into the lota
framework by implementing Perl XS stubs and supporting a one-to-one corre-
spondence between Perl routines and C or C++ function or method calls. The
simulator was purpose built whereas MAVERIK was taken as an off the shelf com-
ponent and integrated into the framework. This took approximately two weeks to
provide full functionality through Perl. Integrating MAVERIK was complicated
by the fact that an early release was used which was relatively inconsistent. The
stubs were hand crafted in order to ensure that access to public data and func-
tionality was made available through the API. Any data or methods that could
be considered to be internal or private were not supported through the API.

To give an impression of the ease in which alternative components can be
integrated into the framework and the limitations imposed on them, we briefly
describe replacing each. The following comments are made on the basis that the
author integrated both the Simulator engine and MAVERIK into the framework.

To incorporate an alternative version of the simulator engine would be simple
provided that the replacement simulator uses particle dynamics. This restriction
is necessary because the dynamic restructuring routines rely upon the model
being particle based rather than body based. If a new solver is required then the
solver method contained in the Solver class could be overridden with a different
implementation. This means that an alternative solver could also be used in cases
where lota’s solver fails to converge.

If a different VR component is desired then integrating a library such as
DIVE should be relatively simple. A tool called SWIG (Simplified Wrapper and
Interface Generator) exists for automatic generation of Perl XS stubs simplifying
the task of integrating components considerably [Bea96], provided the component

lends itself to automatic integration. In this case a VR engine such as DIVE could
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be properly incorporated into the framework in a matter of days.

4.8 Summary

The requirements of the prototype implementation of Iota were: a simulator
which uses a hybrid particle-rigid body approach to simulating physical be-
haviour, support for complexity management, core VR functionality, provision
of a high level scripting language and an implementation which can be classified
as a component framework. The architecture of the prototype framework was
described before each component was detailed individually. Finally since each of
the low level components are independent of each other, they can be replaced
comparatively easily especially if SWIG is used to automate the integration pro-

Cess.



Chapter 5

Case studies and evaluation

n this chapter we present some example simulations which have been imple-
I mented in Tota, carried out using the simulator, and rendered in MAVERIK.
Many of these case studies were chosen from the subject domain of animation
and reimplemented in the lota framework in order to provide suitable compari-
son with the types of simulations typically carried out. Where this is the case we
draw attention to the original work.

We commence with a section describing rigid body simulation, followed by a
section on particle based simulation. Then both techniques are drawn together
in a section describing hybrid simulations. Finally, user interaction and a simple
VR application are discussed by revisiting some of the examples presented in
earlier sections. It is hoped that the variety of simulations illustrated will give
an indication of the breadth of different behaviours which can be simulated and
manipulated using the Iota framework. All the simulations included in this thesis
are available on the accompanying CD as MPEG and Quicktime movies.

To give an impression of the relative complexity of each case study and the
ease with which a simulation could potentially be implemented an approximate
breakdown of each script is given. This is divided into three categories: the first

pertaining to setting up data structures for the models, the second constitutes
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the code required for graphical presentation and finally the third category covers
the logic, simulation and display loop. A general discussion of the frame rates

achieved in the simulations is given in §5.6.

5.1 Rigid body simulation

The following examples are used to illustrate various aspects of rigid body sim-
ulation using Iota. Firstly, a simple example of a molecule hung from a particle
using a point-to-nail constraint is used to show successful motion computation
together with the use of temporal scripted events. Then a simple chain is sim-
ulated illustrating the power of graphical representation. Even though a simple
underlying model is used, the graphical representation contributes to the visual
appeal of the scene. Subsequently, a Jacob’s ladder simulation is used to highlight
the power of dynamic restructuring of the scene and finally a Newton’s cradle is
used to show that much of the detail of a physical system can be abstracted
away while still maintaining enough physical behaviour for the simulation to be

plausible regardless of the actions carried out on it.

5.1.1 Simulating the motion of a rigid molecule

A simple rigid cyclic molecule is pinned using a point-to-nail constraint and al-
lowed to swing about the pinned particle much like a three dimensional pendulum,
as shown in Figure 5.1 (cf. moll.mpv and moll.qt on CD). Navigation towards
the model is shown from subfigure J onwards. This type of ball and stick model
could be useful in a molecular visualisation package. The VR context provides a
means for the user to interactively explore the model, and makes it possible to
interactively design a molecule by generating events to make and break connec-

tions.
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Figure 5.1: Molecule pinned with a point-to-nail constraint

High level scripting languages are excellent at manipulating data in their own
right and can be used to retrieve information from other sources thus allowing
us to use existing data. To illustrate this we have written a simple import facil-
ity which constructs molecules and polyhedra from textual descriptions readily
available online.

Since the polyhedra and molecule data are in different formats they were
imported and converted into an internal common data structure, from which Iota
can build objects. This means that it is simpler to import new shape databases
in the future as the build routines do not have to be changed.

The Iota build routine (Iota::Build) delegates the work to an extensible set
of callback functions supplied by the user. Iota by default provides some simple
callbacks in which particles are represented by spheres, bonds by cylinders and
users need only supply callbacks that they wish to override. This provides a

framework for building objects, but in a very flexible manner as the user has the
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freedom to implement any desired visual representation.

Input formats for both polyhedra and molecules contain the relationship be-
tween points which represent either vertices or chemical bonds. This relationship
can be reflected in the visual representation of the shape through the use of cos-
metic bonds. Cosmetic bonds can be broken as shown in Figure 5.2 (cf. mol2.mpv
and mol2.qt on CD). In this simulation two connections were broken, the first at
the top of subfigure A, and the second at the other end of the molecule in E. The
detached portion falls away under gravity while the pinned portion continues to

swing, but differently due to the change in its moment of inertia and centre of

mass.
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Figure 5.2: Molecule is pinned; two bonds are broken and the molecule breaks
into two

In practice there is some overlap between the look and feel of cosmetic bonds
and what can be achieved through simply using MAVERIK groupings of shapes
(composite objects). However, maintaining a simulator representation of cosmetic

bonds simplifies computation in the event that the scene graph is modified. One
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of the most useful features of cosmetic bonds is that they can be queried for a
transformation matrix to be applied to MAVERIK objects whose local co-ordinate
system has them centred at the origin and of unit size.

Code breakdown: Scene Setup: 10 lines. Presentation: 20 lines. Simula-

tion/Behaviour/Display: 10 lines.

5.1.2 Simulating a chain

To construct a high level representation of a chain we use a routine defined in
Iota (Iota::chain) to build the same common data structure referred to in the
previous section. Subsequently the Iota builder routine is called to build the
simulator and MAVERIK models, again as described earlier.

In this particular example the chain is represented in one of two possible
ways by passing a named callback function to Iota::Build which will create a
MAVERIK representation of a link. If a rope-like effect is desired then this is
simply a shaded cylinder and if a chain-like appearance is desired then each link
is rendered as a torus. To give the appearance of the alternating orientation of
links as found in a real chain, the tori are rotated using functionality implemented
in lota’s transformation routine (p. 202). Both these representations of a chain
are shown in Figure 5.3.

During the simulation, the chain is shown suspended from a nail using a
point-to-nail constraint and is allowed to swing under gravity (c.f. Barzel and
Barr [BB88]). Scripted events have been used to invoke calls to combine and
separate to script a portion of the chain falling off and reassembling itself. The
sequence of images in Figure 5.4 taken at intervals of five frames is used to
illustrate this simulation. Upon separation in subfigure L, a force function is
activated between the two particles to prevent the detached portion from falling

away completely. After some time has elapsed, a second force function is activated
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Figure 5.3: Two representations of a chain

to bring the separated portion into close proximity with the suspended chain and
a call to combine is made to reassemble it as shown in subfigure R.

Code breakdown: Scene Setup: 20 lines. Presentation: 20 lines. Simula-
tion/Behaviour/Display: 10 lines. Two alternate representations are included in

the presentation category.

5.1.3 Simulating a Jacob’s ladder

In this section we introduce a children’s toy known as a “Jacob’s ladder”. It is
traditionally constructed using blocks of wood and ribbons as shown in Figure 5.5.
Typical Jacob’s ladders are between five and nine links long.

Due to way in which the ribbons connect to the blocks, each block can really
only tip in one direction which alternates along the length of the toy. If there
are enough blocks in the ladder, multiple ripples can be sent down its length.
Consider the situation in which two ripples are propagating along the toy; one
can speculate that the situation may arise where the second ripple commenced
too soon after the first and so could catch up with it cancelling them both out.

To be able to simulate the motion of a virtual Jacob’s ladder [GM99], it
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Figure 5.4: Scripted breaking and reassembly of an articulating chain
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Figure 5.5: A Jacob’s ladder



CHAPTER 5. CASE STUDIES AND EVALUATION 147

Figure 5.6: The behaviour of a single link in a Jacob’s ladder
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is necessary to understand the behaviour of one link (two blocks) as shown in
Figure 5.6 We assume that the second block is held still so that the behaviour
of the first block can be seen in relation to it. The first block, shaded light grey,
starts at the top with two red ribbons on it. When it is tipped over, it swaps to
be at the bottom turning 180° at each end of the second block. Notice how the
ribbons swap so that the block now at the top still has two ribbons. If there were
another block in the ladder (three blocks and two links) then the first block would
be permitted to topple through 180° while hinged at the top end of the second
block but only approximately 90° at the bottom due to the physical restriction
imposed by the third block.

Now consider what happens when we hold the first block and allow it to tip.
Say it rotates clockwise through 180° bringing the top of it in contact with the
bottom of the next block; if we continue to hold it then the second block would
tip through 180° anti-clockwise and so on allowing a ripple to propagate down
the length of the ladder. The important thing to realise is that each block’s
orientation is flipped and this can be seen by the alternation of the ribbons on its
face. The motion of the blocks appears simple at a first glance but as we can see
it is complex and hard to visualise. To be able to simulate this type of motion we

need to specify a suitable model which will exhibit the appropriate behaviour.

Building the model

To utilise the physical model for computing motion in the simulator, each block is
modelled using simulator primitives. A number of possible configurations of these
primitives could be used to construct the model. Recall from Chapter 3 that a
hinge consisting of n particles contributes n — 1 equations in each dimension to
be solved simultaneously. In the interests of performance it would be desirable

to minimise the amount of computation required. A carefully chosen model can
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significantly improve the interactive response of the simulation.

Imagine viewing a Jacob’s ladder side-on as was shown in Figure 5.5. In
this diagram the toy was oriented such that the narrow side face of each block
appeared to be at the front with the remainder receding into the paper. Our
model abstracts away much of the detail while trying to secure as much of the
behaviour as possible. This is achieved by retaining the essence of a block by
representing it as a two dimensional body with four particles situated at the
corners of the narrow face and one in the centre. The advantage of this approach
being that each hinge consists of two particles thus providing a contribution of
one equation in each dimension, in other words two equations per hinge. We
justify this by the observation that the links in the ladder cannot twist and so
each hinge actually only has two degrees of freedom.

Unlike the model, blocks in a real Jacob’s ladder do not rotate about a hinge,
instead they rotate approximately about a point where the ribbons on each block
cross. However at speed it appears simply as if the hinging occurs at the point
where the blocks meet, corresponding to hinges in our model, further justifying
the approach taken. A numbering convention, shown in Figure 5.7 was adopted
to represent the bodies and particles which make up the model.

Each of the N blocks is constructed from a body of five particles and is
assigned a number from 0 to N — 1. The four corner particles are themselves
numbered such that they reflect the system’s symmetry and this in turn allows
concise code to be written using the relationships between adjacent blocks. A

number of observations may be made with respect to this labelling of particles:

e Particles which hinge will always be numbered the same on both blocks.

e Odd numbered blocks (1, 3, 5, ...) will hinge on corners 0 and 1 with

previous blocks.

e Even numbered blocks (2, 4, 6, ...) will hinge with the previous block on
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Figure 5.7: Numbering convention adopted in the Jacob’s ladder

corners 2 and 3.

e Exclusive-oring with 01, will enable us to traverse a block along its length

from any corner.

e Similarly, exclusive-oring with 10, enables the width of a block to be tra-

versed from any corner.

e It has been found useful to view each block as possessing two orientations,
lengthunse and widthwise. In the initial state lengthwise orientations are

alternately up and down, whereas widthwise orientations point right to

left.

The implications of these observations with regards to simulating the model will
become clearer in the following section. Before the process of simulating this
model can be described, it is appropriate to discuss the data structure used to

store relevant information for the simulation.
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Figure 5.8 shows the data structure for the ladder representing its state as

well as retaining Perl references to C structures in MAVERIK and the simulator.
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Figure 5.8: Data structure for representing Jacob’s ladder state

Initially the first pair of blocks hinge on corner 0 and the second on 3 alternating
similarly along the length of the ladder (c.f. Figure 5.7), and these are stored in
the state array. Each element in the state array holds a conceptual relationship
between pairs of blocks stored in the blocks array. Since the first block in the
Jacob’s ladder does not have a relationship with a previous block there is no
need to store any information about it. Each block is composed of a number of
particles and this is reflected in the data structure. Pointers in the blocks array

reference further arrays containing the following data per block:

Composite and composite data: These contain the MAVERIK representa-
tions of a block. One is used for rendering and the other for transforming

the composite object.

Body and particles: Simulator representations for each block are stored in

these elements.

Ribbons: It is necessary to store some information relating to ribbons as their

configurations change during the simulation.
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Since Perl is weakly typed it is possible to package together the MAVERIK,
simulator and Perl data into an array. Logically we are storing all the attributes
of the blocks, in the Jacob’s ladder object, in simple arrays. Contrast this with
other languages such as C where arrays can be used to do little more than store

elements with the same type.

Simulating the model

To simulate the motion of the entire ladder only involves specifying the behaviour
of a single hinge. Once the constraints on the motion of the model are understood,
the physical model in the simulator can be used to compute the overall motion of
the system. As we will see, many subtleties in the motion of the real toy appear
in the virtual one. First let us consider the motion of one hinge again, but this
time in a more detail.

Figure 5.9 shows a pair of hinged blocks. Their range of allowable motion is
confined to quadrants 1 and 3. Notice the position of the black dot representing
the hinge as it is significant and implies that the shaded quadrants 2 and 4 are
out of bounds. The lighter grey shaded regions are inactive but become actively
forbidden regions after a flip-flop. Moreover observe the lengthwise orientation
vectors on the blocks as these too are also important.

Consider the first configuration of the pair of blocks, assuming that the second
block remains stationary. If an attempt is made to push the first block into
the shaded region both blocks will lock preventing any further intrusion. The
first block is allowed to move into quadrant 1 if it is subject to an appropriate
unbalanced force. Following the sequence of allowable motion (reading Figure 5.9
across and down) of the block it can be seen that after a 180° rotation the hinge
is broken and reassembled at the bottom end of the second block and then the

first block is allowed to continue through another 180° turn. This swapping of
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Figure 5.9: Allowable motion of a hinge in a Jacob’s ladder
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Algorithm 4 Main Jacob’s ladder algorithm

1: for all block in ladder (excluding first one) do
2:  if hinge is locked then

3: if torques acting on current and previous blocks cause them to unlock
then

4: Unlock hinge {Algorithm 7}

5: end if

6: else

7 Calculate lengthwise orientation of current block

8: Calculate lengthwise orientation of previous block

9: Calculate cross-product of both orientations

10: if cross-product < 0 then

11: Sum both orientations

12: if magnitude of sum is large then

13: Perform flip-flop {Algorithm 5}

14: else

15: Lock blocks {Algorithm 6}

16: end if

17: else

18: {Normal tipping — No action}

19: end if

20: end if

21: end for

the blocks is termed a flip-flop.

Now observe the relationship of the lengthwise orientation vectors, initially
the first block’s vector points upwards and the second block’s points downwards.
After a 180° turn the vectors both point down and after a flip-flop they point
towards the hinge. These orientations can be examined to determine a number
of things. Firstly if the magnitude of the cross product of the two vectors is less
than zero then an attempt has been made to enter quadrant 2 or 4. This means
that some sort of action is required, the type of which can be determined by
adding both vectors together and examining their magnitude. A small number
resulting from the sum of the vectors implies that the pair of blocks have to be
locked (c.f. Algorithm 6) whereas a large number implies that the blocks have to
be flip-flopped (c.f. Algorithm 5). If the magnitude of the cross product of both
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vectors is greater than zero then no action is required. The behaviour of one pair
of hinging blocks has now been formalised so we can describe the algorithm for
simulating the Jacob’s ladder (shown in Algorithm 4 above).

The flip-flop algorithm works by performing a separate on the two points
which make up the hinge. To derive the numbers of the new particles to hinge
upon, the separated particle number is exclusive-or’ed with 1 (015) and recom-
bined. The flip-flop also causes the configuration of ribbons to change. While
this is only cosmetic, it is an important visual cue in the simulation. The inner
and outer ribbons have to be swapped on each of the two blocks. A number of
possible ways of implementing this exist, the best and simplest is to create all

the ribbons which can be rendered but to hide those which are not visible.

Algorithm 5 Algorithm to flip-flop blocks in the Jacob’s ladder
1: Separate currently hinged corners
2: Calculate particle numbers for new hinge {by exclusive-oring current particle
numbers with 015}
3: Combine particles for new hinge
4: Hide and draw ribbons as appropriate

To lock hinges a further combine on the hinged corner is performed. To
understand why, recall from Chapter 3 (p. 116) that combining two points from
the same particle results in the two parent bodies being combined, and so making
the hinge rigid. Recall also that during this type of combine, one of the points is
removed because it is considered to be redundant. Anticipating that this point
will be required when the hinge is unlocked, it is subsequently recreated so that
there are still ten particles in the new body (five from each original body). Since
one of the two original bodies is destroyed, the body entry in the blocks array
is set to be undefined.

Finally the hinge is marked as locked, so that it can be treated appropriately,
and the following method has been adopted for this. Since the elements in the

state array only ever hold the two particle values which a block hinges on, the
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two unused values may be used to signify a locked hinge.

Algorithm 6 Algorithm to lock a hinge in Jacob’s ladder
1: Perform a further combine on the hinged corner {This has the effect of causing
both blocks to become consolidated into the same body}
2: Clone hinged point {to retain ten points in new body, as before}
3: Mark hinge as locked

Unlocking a hinge is performed by detaching the central particle from one of
the bodies using separate to create a new body which is then entered into the
blocks array. Each of the block’s four remaining particles must also be separated
and combined with the new body. In very rare circumstances the body which
has become unlocked may actually be locked to a another block and some further
manipulation is required to maintain the correct parent articulate. Finally the

hinge is recreated, by combining the corners in question, and marked as unlocked.

Algorithm 7 Code to unlock a hinge in the Jacob’s ladder

1: {Reconstruct two separate bodies as it was prior to the locking action}
2: Detach central particle from notional second body
3: Insert new body into data structure
4: for all particles to be repointed to second body do
5:  Detach particle from parent body
6: Repoint to new body

7: end for

8: If next body is also locked, repoint it to new parent

9: Rebuild hinge using combine

10: Mark hinge as unlocked

The first set of results presented in Figure 5.10 (cf. jacob.mpv and jacob.qt on
CD) shows screen shots of the Jacob’s ladder taken at intervals of eight frames.
Although it is difficult to see the subtleties of the motion from such images, we
would like to draw the reader’s attention to subfigures A through G. Notice how
the third block is pushed down and then pulled back up over the sequence, in
particular a significant change in position has occurred between E and F. From

subfigures G to R we have gradually navigated down to follow the propagation of
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Figure 5.10: Jacob’s ladder simulation
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the ripple. Subfigure N is of interest as the third block is momentarily unable to
tip because the previous two blocks have locked and their united motion disrupts
it. This behaviour can occasionally be observed in the real toy. Also, notice how
the second and third blocks appear to have become locked in S and T and are
then possibly unlocked by U. The types of subtleties introduced can only result

from the use of a physically based model.

Summary of Jacob’s ladder simulation

This particular example makes heavy use of our dynamic restructuring routines
and each flip-flop or lock fundamentally changes the underlying model and was
a non-trivial case study to implement. It was originally unclear whether or not
a convincing simulation could be achieved through the careful use of dynamic
restructuring. We have only shown this restructuring occurring as scripted events
for the time being, but there is no reason why the user cannot affect such changes.
Indeed any interactive breaking or reassembling is possible via these routines.
Any degree of dynamic restructuring can be effected by various permutations of
combines and separates.

Although many constraint solvers have been implemented to generate ani-
mation sequences [BB88, Bar92a|, few have been tailored specifically for virtual
reality applications [Fau99, Wo099, KSZB95, KSB] and even fewer enable scene
data to be dynamically restructured [WGW90].

We have found that our Jacob’s ladder model can be simulated at interactive
frame rates. No collision or contact constraints are implemented so blocks can be
seen to occasionally pass through one another for a single frame.

Although the connectivity of blocks in a real Jacob’s ladder differs from that
in our model and as such the model is not a faithful representation, our virtual

ladder contains all the subtleties of motion exhibited by the real toy. Finally, the
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virtual Jacob’s ladder is as addictive as the real thing.
Code breakdown: Scene Setup: 120 lines. Presentation: 100 lines. Simula-

tion/Behaviour/Display: 160 lines.

5.1.4 Simulating a Newton’s cradle

A Newton’s cradle is an interesting executive toy often found on office desks and
its appeal lies in the hypnotic unintuitive motion it exhibits. The toy is composed
of a set of metal balls suspended on wires from a cradle like frame, as shown in
Figure 5.11. Lifting a ball at one end of the cradle, and releasing it results in a
collision between the moving and stationary balls. Interestingly, upon collision,
the moving ball almost comes to an abrupt halt and an impulse (force exerted
over a negligible time period) is transmitted through the set of balls causing the
ball at the other end of the cradle to continue the motion. This behaviour is
attributable to the fact that momentum before and after a collision is conserved,
and since in this case collisions are considered to be elastic, energy too must be

conserved.

Figure 5.11: A Newton’s cradle
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Grouping together two balls, lifting them and releasing in the manner de-
scribed above, results in the impulse being transmitted through to two balls at
the other end of the cradle. This behaviour can be shown for any number of balls
and some examples are illustrated in Figures 5.12 and 5.13 (read in the order
indicated by the arrows).

Notice how the cradle behaves when a single ball is raised at one end of the
cradle and two balls at the other as shown in Figure 5.13. When both sets are
released at the same time the groups appear to swap upon collision. This and
further observations regarding the motion of a Newton’s cradle are discussed in
the following section, together with the motivation for the choice of model used

to represent it.

Building the model

There are numerous examples of the Newton’s cradle available on the World Wide
Web but very few are suited to incorporating into a virtual environment. To
explain this statement, consider the traditional methods of modelling a Newton’s
cradle.

Purely physically based methods exist which simulate the impulses travelling
through the balls suspended from the cradle (c.f. MathEngine [W0099|. In this
case no specific insight into the behaviour is required since the physics of the real
world is modelled. The problem with this approach for VR lies in the proces-
sor time required to simulate impulses with purely elastic collisions effectively.
Moreover, the real world is not as perfect as the results obtained by using simple
Newtonian physics would indicate. To simulate the subtleties of motion requires
proper consideration of drag caused by air resistance and energy loss during colli-
sion. Most physical models employ an ad-hoc technique for simulating this rather

than a proper physical treatment as this would rapidly become too complex to






Figure 5.13: Furth
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simulate. Even if the simulation is fast enough to be interactive (which is almost
certainly the case in the example of a Newton’s cradle) a rich VE provides a
broader context which typically cannot afford to have a large proportion of the
processor time devoted to one particular simulation.

Another approach often used involves ad-hoc animation of a Newton’s cradle.
This is the other extreme, the behaviour of a Newton’s cradle is known and
this knowledge is exploited. The user may press a key to instruct the program
to lift a specific number of balls upon which the animation is played. Many of
these examples can not simulate the swapping behaviour exhibited by a Newton’s
cradle and often the model has no real concept of gravity. The motion is merely
computed using elementary trigonometry. In a VE the user should be free to
play with the Newton’s cradle, so for every combination of balls lifted, the model
must promptly simulate in a correct and visually pleasing manner. If the type of
ad-hoc approach described above is used to simply play back an animation then
every possible combination of the motion would have to be provided.

So, from this discussion it can be concluded that a physical model is desirable
but it is also ideal to reduce the problem to the simplest possible form to minimise
the amount of computation required. Two observations regarding the behaviour
of a Newton’s cradle are exploited in the design of our model; the motion of each
ball in a group is exactly that of a pendulum and such groups swap positions
in the cradle upon collision. We use a combination of an ad-hoc model with
physically based simulation of a pendulum. This choice of model is justified by
the fact that in isolation each ball suspended from the cradle is in fact a pendulum,
furthermore a group of any number of pendulums move as one. So the simulator
is used to evolve the motion of a single pendulum until required to intervene in
the case of a collision

Since all balls in a group move in unison only one pendulum is required to
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simulate each group. Consider the case in which collisions are ignored; initially
when the balls in the cradle are all at rest, only one pendulum will suffice to
simulate the motion. If all the balls are pushed maintaining the group intact
then again simulating only one pendulum is enough. Splitting the group into two
changes the situation, now two pendulums are required to simulate the motion.
So it is safe to say that a linear relationship exists between the number of groups
and the number of pendulums required to simulate them. Figure 5.14 illustrates
two possible groupings for a six ball Newton’s cradle together with the underlying
pendulums simulated. The first underlying pendulum used to simulate the motion
of a group consisting of two balls of unit diameter is centred about the group at
an offset from the centre of the cradle of —2. A second group consisting of four
balls is represented by the underlying pendulum offset at +1 unit to the right of

the origin.
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Underlying pendulums

Figure 5.14: Newton’s cradle groupings

A data structure, shown in Figure 5.15 is used to represent each group together
with the attributes specific to it. The centre of a group corresponds to the
position of the underlying pendulum being simulated. Furthermore, the number
of notional balls in a group must be stored to be able to render them.

Since there is only one pendulum in the underlying model of a group, only one
simulator body has to be stored together with its constituent six particles: one

at the top hinge, one at the centre of the ball and four around its circumference.



CHAPTER 5. CASE STUDIES AND EVALUATION 165

@grouping 0 1 2 3 4 5 6 7 8

0 N | c | B | p0| pl| p2 p3| pd | p5
1 N | Cc | B | p0 pl| p2| p3| p4d | p5
% g & — —~ —
= 5 2 ~ o=~ @
f; @) A NS K
R= Sy o I~ 2
[7) o ~ g@ =
— bl = <
< 5 = Ny oW
< o) , = :
g i S Ball Particles
zZ

Figure 5.15: Newton’s cradle data structure

An appropriate moment of inertia is maintained by placing four particles around
the circumference of a ball. All the groups are held in the grouping array from

left to right by convention, to simplify collision detection.

Simulating the model

Simulating the motion of the reduced number of pendulums in the Newton’s
cradle is automatically handled by the simulator until a collision takes place, at
which point some action is required. Before any action can be taken, we have to
actually determine whether a collision has taken place. A custom collision test
based on geometry is used; alternatively it is possible to use MAVERIK’s collision
detection routines if required.

In the event of a collision an offset, as shown in Equations 5.1, is applied to

both groups involved and then they are swapped in the grouping array.

Pa = Pa + 1 * width_of_ball (5.1a)

Pb = Db — N * width_of ball (5.1b)

The quantities p, & p, represent the positions of the underlying pendulums in
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the cradle and n, & n; are the number of balls in each group involved in the
collision. Another collision may occur immediately with the swapped group and
its neighbour so it is necessary to retest before rendering. The effect of this
manipulation is that groups are literally swapped and allowed to continue their
motion.

A simulation of the Newton’s cradle is illustrated by Figure 5.16. Two balls
are scripted to be raised and then allowed to fall. Although it is difficult to do
justice to the simulation from a sequence of images, it is hoped that an impression
of realistic behaviour is given. By subfigure B, the initial group has been split

into two. All subsequent images retain these two groupings as no other balls are

raised.
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Figure 5.16: Simulation of a Newton’s cradle

Code breakdown: Scene Setup: 30 lines. Presentation: 60 lines. Simula-

tion/Behaviour/Display: 140 lines.
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5.2 Particle based simulation

Particle systems are used in this section to simulate the behaviour of virtual
boids, a soft molecule and a ‘breathing’ Bucky ball. Although these simulations
are quite simple examples of interacting particle systems they have been chosen to
illustrate the idea that any force function can be scripted in Iota and attached as
a callback function to create bonds (statically or dynamically) between particles.
This mechanism allows the user to exercise very precise control by setting up
several different types of internal and external force functions to manipulate the

system.

5.2.1 Simulating boids

Reynolds’ classical boids simulations [Rey87, Rey, Nab] are well known in com-
puter animation and such algorithms have been widely used to simulate the flock-
ing behaviour of animals in films. This simple but effective result was achieved
by using interacting particle systems and is reproduced here using lota.

To simulate the motion of our version of virtual boids [Bro, ROD 98, RSG]|, we
use an interacting particle system. All particles interact with each other through
a long range attractive and short range repulsive force function. In effect, each
boid maintains a small separation from every other boid but they still move in
unison. The simulation is driven by a scripted driver particle which moves along
an arbitrary path and the flock will follow.

Currents are added to the simulation to enhance the complexity of the motion
of the flock. This is achieved by partitioning the world into grid cells and using
a fractional Brownian motion (fBm) function to generate a three dimensional
fractal force vector field. An implementation of Perlin’s noise and Musgrave’s
fBm functions [MPPW94] were added to the vector class in the simulator. The

fBm function provides a fractal three dimensional field with currents and uses
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noise as a basis function. This results in a simulation of the gradual transition of
flow direction through a fluid medium.

MAVERIK provides a means for reading a description of a composite in AC3D
format (a 3D file format). Such descriptions are readily available online for many
common objects, but because data was locally available for an AC3D fish the
boids were rendered as fish. The sequence of images shown in Figure 5.17 il-
lustrates a shoal of fish schooling towards the driver particle. Subtleties in the
motion of the fish are more apparent in the actual simulation where the fish ap-
pear to glide while jostled by turbulence. This can be clearly seen in the movie

on the accompanying CD (cf. fishies.mpv and fishies.qt).
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Figure 5.17: A shoal of fish

Code breakdown: Scene Setup: 30 lines. Presentation: 40 lines. Simula-

tion/Behaviour/Display: 15 lines.
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5.2.2 Simulating a soft molecule

Recall from §5.1.1 that descriptions of molecules and polyhedra could be read into
Iota and used to render rigid molecules. Now consider, what happens when each
connection is represented as a force function rather than a rigid connection. The
resulting system, an example of which can be seen in Figure 5.18 (cf. mol3.mpv

and mol3.qt on CD), appears to be soft and deformable.
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Figure 5.18: A soft molecule

In this particular example a simple force function was used to represent con-
nections. One of the particles in the model was fixed using a point-to-nail con-
straint and the molecule was allowed to swing about it like a three dimensional
pendulum, much like the rigid molecule example earlier. However, since the
molecule is built as a soft object, its motion characteristics differ significantly
from the rigid example. Notice that the molecule settles into an elongated shape
due to the effect of gravity. Finally, for aesthetic appeal, connections are rendered
as ellipsoids.

Code breakdown: Scene Setup: 10 lines. Presentation: 30 lines. Simula-

tion/Behaviour/Display: 10 lines.
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5.2.3 A breathing Bucky ball

In this section the same method (described above) is used to import and construct
a soft molecule, but with two major differences; firstly gravity is not applied to
the system, and secondly the implicit system particle is placed in the centre of
the molecule. Setting up a repulsive force function between this central particle
and all the other particles in the molecule prevents the structure from collapsing.

Buckminster fullerene is the common name for Carbon-60. For many years
chemists believed that it would be possible to synthesise carbon in this peculiar
form, and only relatively recently has this objective been achieved. Buckminster
fullerenes are commonly known as ‘Bucky balls’ and the connectivity of carbon
atoms is akin to the patchwork on a football. Mathematically, this shape is
referred to as a truncated icosahedron, shown in Figure 5.19 (cf. bucky.mpv and
bucky.qt on CD), and has generated much scientific interest due to the prospect
of synthesising super-conducting Bucky balls and tubes by inserting particular

metals inside the mesh.

Figure 5.19: A truncated icosahedron

Oscillations about the rest length of a chemical bond occur naturally thus
causing Bucky balls and other chemical molecules to appear to breathe. The
degree to which this occurs cannot be easily observed as atomic distances are so
small. In the context of a molecular modelling application, it would be useful to
visualise the breathing behaviour of such compounds, since this could give some

insight into whether or not metals could be introduced through the gaps as the
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molecule breathes. So simulating this behaviour is an interesting exercise and the
montage of images in Figure 5.20 shows our virtual Bucky ball pulsating. After

subfigure H, the viewpoint is placed (by navigation) within the Bucky ball.

- ® o e
e

JEIE YTt

Figure 5.20: Breathing Bucky ball simulation

Although, the force functions used for this particular example are not especially
realistic, we have shown that this type of soft mesh can be simulated at interactive
frame rates using lota.

Code breakdown: Scene Setup: 10 lines. Presentation: 30 lines. Simula-

tion/Behaviour/Display: 20 lines.

5.3 Hybrid simulation

In the real world rigid objects and soft objects coexist, and in many cases within
single objects, for example an umbrella contain both rigid and flexible compo-
nents. As we have already seen many animation and the few VR systems which
currently exist perform either rigid or flexible body simulation, few will enable a
natural marriage of the two. In this section, an undersea simulation example is

used to show how effective this combination can be.
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5.3.1 Undersea simulation

For this particular simulation, we make use of the boids (c.f. §5.2.1) and chain
examples. Seaweed is simulated using both flexible and articulating chains; these
are constructed with articulating nodes of four bodies all hinged at the base (c.f.
Francois Faure [Fau99]). Each rigid body then has a particle system based strand
attached. Another variety of seaweed is simulated using a single articulated chain
only. The benefit of this combination is to reduce complexity in terms of solving
large numbers of unknown forces for each strand. Gravity acts upwards rather
than downwards to simulate buoyancy and the simulation is choreographed by
activating and deactivating force functions at certain time intervals.

Notice that a fish is detached in Figure 5.21 (cf. undersea.mpv and undersea.qt
on CD) by deactivating the force function between it and the rest of the shoal. A
new force function is then activated between the seaweed and the lone fish, which
then dives towards the seaweed where it lingers for a time thus simulating feeding.
Another temporal event then separates a segment of seaweed and combines it
with the fish particle. The force function between the seaweed and the fish is
deactivated and the one between the fish and shoal is reactivated. Notice how
the fish with the segment of seaweed now has difficulty keeping up with the rest
of the shoal due to its change in mass. Finally another temporal event occurs,
separating the fish from its segment of seaweed allowing it to properly rejoin the
shoal while the seaweed drifts away.

This simulation has been used to illustrate the way in which articulating and
particle based models can be intermingled, together with the idea that a variety of
different force functions can be constructed, activated and deactivated as desired.
Also, the use of temporal events to choreograph the simulation was illustrated.

Thus-far we have only shown simulations controlled by scripted events, but

naturally we wish to interact with them directly and affect the outcome of the
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Figure 5.21: A shoal of fish in an undersea simulation
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simulation. For this reason we will now consider interactive scene manipulation.
Code breakdown: Scene Setup: 50 lines. Presentation: 60 lines. Simula-

tion/Behaviour/Display: 150 lines.

5.4 Interactive scene manipulation

VR is about providing natural interfaces for human computer interaction in a
highly visual context. If the simulations are to be interactive they must not only
be computed at interactive frame rates but the user should be able to manipulate
them. In this section we describe the enhancements made to the chain and
Newton’s cradle examples to facilitate interaction with the scene using a standard
mouse. It is inappropriate to revisit all the examples covered so these were chosen
because they illustrate different aspects of user interaction with the scene. All
the examples described above could easily have been modified to include user

participation.

5.4.1 Chain revisited

This particular example is used to illustrate the power of the combine and
separate routines to interactively dynamically restructure a scene. The chain
example was chosen because it is quite simple and so the kinds of user invoked
behaviour which have to be programmed are relatively trivial.

A mouse callback was registered to be invoked when the middle mouse button
is pressed or released. If a link in the chain is selected then the particular one
chosen is identified through a simple intersection test and a force function is
constructed between it and the mouse particle. Once a link has been selected it
is coloured red by convention as shown in Figure 5.22 (cf. chain.mpv and chain.qt

on CD), to indicate to the user that a relationship exists between it and the
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mouse. The link can be dragged around by the user via a force function, while
the simulator maintains the constraints intact. This means that the link will
not actually follow the mouse exactly, rather it will do its best to move in the

direction of the force.
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Figure 5.22: User interaction with the chain model

Two further actions on keyboard events are registered. Pressing the b key
breaks the chain by invoking separate on the selected link and the one above
it. On the other hand, provided the body is detached, pressing the ¢ key invokes
combine on the selected body and its nearest neighbour. Subfigure G in Fig-
ure 5.22 shows the fourth link from the top coloured red as it is dragged up and

right. It is then detached from the chain in subfigure Q.
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Code breakdown: Scene Setup: 20 lines. Presentation: 20 lines. Simula-

tion/Behaviour/Display: 130 lines.

5.4.2 Newton’s cradle revisited

In the Newton’s cradle example, ideally the user ought to be able to select a ball
and raise or lower it while the motion of the other balls is correctly simulated
around it. There are subtleties which must be taken into account; for example
selecting the centre ball in a cradle (at rest) consisting of seven balls and dragging
it left should result in a group of four balls being raised, leaving three balls
stationary. Similarly dragging the ball to the right should result in a different set
of four balls being raised. So from this it can be seen that not only the selected
ball but the direction in which it is pushed will affect the number of balls in each
group.

A suitable test has to be implemented to decide how to split groups into
subgroups as a result of moving balls. In the scripted case, the initial number
of balls in each group were explicitly coded. If a user is responsible for selecting
combinations of balls to lift, there is no way of predicting how many balls should
be in each group, when the user may choose to intervene or the direction in which
a group will be pushed.

The nature of the test to split groups involves considering either of the two

following cases:
e Held ball is pushed left and is not the rightmost ball in the group, in which
case the split occurs to the right of the held ball.
e Held ball is pushed right and is not the leftmost ball in the group, in which
case the split occurs on the left of the held ball.

Another issue which must also be addressed is how to handle a collision with

a group that is being dragged. Should the groups be swapped as has already been
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described, or should the two groups be consolidated into one? This issue really
addresses the natural expected behaviour of a Newton’s cradle. Both choices
described above appear to be plausible but which is better or appears more nat-
ural? The decision is not a clear cut one and has much to do with anticipating
what the user really intends to achieve from selecting a ball. We chose to opt
for consolidating the group for two reasons; one being that previously there was
no means for consolidating groups. This meant that in the worst case scenario
each group could consist of one ball adding a significant performance overhead.
Secondly, if a user is holding a ball about to face a collision they intend to do
something with it, the only real actions which can be performed are to push a
ball left or right so consolidating the groups seems the natural thing to do.

Appropriate behaviour was attached by registering a callback to activate when
the middle mouse button is pressed or released. If pressed, the selected ball (if
any) is determined by an intersection test which takes the viewer’s line of sight
together with the position and orientation of the cradle into account. Once a
ball is selected, the user is able to drag it around as desired. This behaviour is
achieved through the use of a force function constructed between the selected ball
and a particle which tracks the mouse. Notice that in Figure 5.23 (cf. newton.mpv
and newton.qt on CD), by convention the selected ball is coloured red to convey
this information to the user.

In subfigure B the two rightmost balls are raised and released in subfigure G.
Subsequently the three rightmost balls in subfigure K are also raised and then
released in M. Note how both sets of balls are involved in a collision with the
stationary group containing two balls in the centre. The number of balls in each
moving group swap upon collisions. From subfigure T onwards the cradle is spun
by the user.

Adding user interaction almost doubled the size of the script due to the wide
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Figure 5.23: Interactive simulation of a Newton’s cradle
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range of possible scenarios, but given that the Newton’s cradle script is relatively
short, in real terms this is very little. The extra effort was deemed to be worth-
while as user participation in the simulation became natural. Most people who
have tried the Newton’s cradle example found the interaction to be responsive,
natural and enjoyable. Moreover, from a programming point of view, the extra
code involved consisted of case handling logic rather than complex algorithms.
Code breakdown: Scene Setup: 30 lines. Presentation: 60 lines. Simula-

tion/Behaviour/Display: 300 lines.

5.5 A simple VR application

A simple VR walk-through application consisting of a locally available room
model (Advanced Interfaces Group laboratory) was implemented within the Iota
framework. This was used to provide context for the Jacob’s ladder and New-
ton’s cradle models. Both models performed well within the context of a large
model that could be explored. The user was able to interact with both toys in
the laboratory. The Jacob’s ladder can be seen to appear to be on a computer
monitor in the environment, as shown in Figure 5.24 (cf. aig.mpv and aig.qt on
CD).

The Newton’s cradle is placed upon a desk in the laboratory, as can be seen
in Figure 5.25.

Both simulations coexist satisfactorily in the environment. Furthermore they
provide a user with an interactive task in an otherwise static model.

Code breakdown: Scene Setup: 150 lines. Presentation: 160 lines. Simula-

tion/Behaviour/Display: 490 lines.
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Figure 5.24: A Jacob’s ladder in the AIG lab
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Figure 5.25: A Newton’s cradle in the AIG lab
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5.6 Performance evaluation

A quantitative impression of the performance of case studies can be achieved by
using a profiler to gather statistics, and so obtain a measure of the amount of
processor time spent in specific functions. The profiler delivers very accurate but
low level statistics about the thousands of subroutines which are called, so to
provide more meaningful results they have been post-processed to attribute them
to individual components of Iota. One of the benefits of this experiment is that it
is now possible to obtain an impression of the performance penalty paid for using
a high level scripting language. Furthermore the performance improvements pos-
sible through the use of specific optimisations can also be seen. Performance data
presented in this section was obtained using Silicon Graphics’ ‘SpeedShop’ soft-
ware on an Indy with a MIPS R4400 processor and R4000 floating point unit. It
is important to note that the following charts only show the contribution of listed
components to less than twenty five percent of the total processor power. The
remaining seventy five percent (approximately) which is not shown was devoted
to other processes, in particular rendering and synchronisation delays.

Since each simulation can vary dramatically in terms of simulator involvement,
profiling was carried out for the Newton’s cradle and Jacob’s ladder examples.
These simulations demonstrate widely differing aspects of the Iota approach and
are in fact at two opposite extremes; the Newton’s cradle being largely ad-hoc
and the Jacob’s ladder being predominantly physically based. As such, profiling
data should exhibit significantly different characteristics.

The Newton’s cradle minimises the use of the simulator by reducing the prob-
lem to single underlying pendulums for each group in the cradle. The majority of
the logic is coded in Perl and so can be seen to play a dominant part in processor
usage, as shown in Figure 5.26. SpeedShop was unable to attribute twenty four

percent to any specific component, but the general picture is still clear. It is
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apparent that for this model Perl and the simulator represent a large component
but of a small pie. To reinforce the context within which these statistics are
presented, the 45% CPU utilisation is out of a pie chart which captures 25% of
the CPU time, so represents 1/8 CPU time.

Another possible measure of performance can be obtained by examining the
frame rate at which the case studies were rendered. It was found that the case
studies were rendered at between 15 to 75 frames per second (FPS) on a 366MHz
Pentium II Laptop computer and marginally slower on a Silicon Graphics Indy.
The simulations at the slower end of the frame rate spectrum were either graph-
ically intensive, as is the case in the AIG laboratory application; or simulator
intensive, in the Jacob’s ladder case study for example. Simpler case studies such
as the Newton’s cradle were rendered at 25 FPS. The simplest case studies such
as the articulating chain and the rigid molecule were rendered at the top end of
the range (75 FPS).

A possible reason for the round number of FPS typically achieved could be at-
tributed to the fact that graphics libraries tend to synchronise each frame update
with the scanline on the computer screen. Typically worldwide screen updates
occur approximately 75 times per second. It is therefore not coincidental that the
Newton’s cradle case study is rendered at 25 FPS frame rate as this means that
calculations and the screen update took more than a fiftieth of a second, but less
than a twenty-fifth. The frame rate cannot be improved much until a frame can
be computed faster than one fiftieth of a second, which is generally difficult, and
unlikely to be solved by removing the scripting language. These types of benefits
may come from reducing the graphical detail, for example simplifying the lighting
model or rendering spheres using fewer facets.

In contrast Figure 5.27 on shows the result of profiling the Jacob’s ladder

simulation with a model consisting of six blocks. In this simulation ten unknown
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Figure 5.26: Newton’s cradle profile results

forces have to be solved simultaneously for each time step. Thus it is not sur-
prising that in this case, the simulator dominates. Perl is seen to also contribute
significantly to the computation cost and this is to be expected as much of the
logic to determine whether to flip-flop, lock or unlock hinges is carried out at that
level.

The performance benefit of using articulates to structure the problem domain
is illustrated in Figure 5.28. In this case two Jacob’s ladders, one with three
and the other with four blocks, were simulated. It can be seen that solving ten
unknowns as one set of six and another of four is not as computationally intensive
and that the simulator is now less dominant. Interestingly though, a matching
significant gain in frame rate is not achieved. This reinforces the earlier point
that to improve the frame rate by a notable factor is far from trivial.

Although Perl has been shown to contribute to at least a quarter of the pie
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Figure 5.27: Jacob’s ladder profile results
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(in the best case), this cost is considered to be acceptable within the context that
the main processor intensive task is still rendering. Small scale simulations are
carried out in only twenty five percent of the processor’s total usage and around

three quarters of that is attributable to both Perl and the simulator.

5.7 Evaluation of division of coding effort

To convey an impression of the complexity of each case study a division of
the coding effort into three categories (Scene setup, Presentation and Simula-
tion/Behaviour/Display) was given. This exercise shows two things in particular;
firstly the ease in which simulator functionality is invoked indicates that the de-
veloper does not require an in depth knowledge of physics. Secondly the amount
of code necessary to implement user interaction in the case studies was signifi-
cant. This is due to the fact that currently the Iota prototype supports little high
level functionality for selecting objects, tracking the mouse and similar support
for user interaction and this problem can be addressed by providing a custom
module.

Implementing user interaction with the Newton’s cradle and chain case studies
shows a significant increase in the Simulation/Behaviour/Display category. For
the Newton’s cradle this was found to roughly double the coding effort in this
category. The chain example required about 120 lines more code to enable user
interaction and assembly /disassembly of the model. Broadly speaking this means
that implementing user interaction in the current framework can be considered
to add approximately 100 to 200 lines of additional code.

In the simple case studies a greater contribution to coding effort was found
to be made by the Presentation category which involved setting up MAVERIK
colours and customising the default graphical representations. Whereas in the

more complicated case studies the dominant coding effort was found to be logic
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describing the behaviour of the models.

The Simulation/Behaviour/Display category was grouped together because
they are interrelated but most of the coding effort in this category can be at-
tributed to the logic describing the behaviour of the models. Only one line of
code could be directly attributed to a call to the simulator and typically eight
lines was contributed by the display part of this category.

So given the amount of complex simulation involved in each of the case studies
and in particular the complexity of the Jacob’s ladder case study, it is fair to say
that in many cases a surprisingly small amount of high level code has to be

implemented by a developer.

5.8 Evaluation of user perception of motion

Slater states in his response to the Witmer and Singer questionnaire [Sla99] that
he is loathe to use questionnaires but that currently there is little alternative
for measuring presence. We cite this argument as a basis for using a subjective
questionnaire to assess whether or not people consider the motion of objects sim-
ulated in the case studies to be plausible. Measuring plausible motion is in many
ways similar to the problem of measuring perception because both may depend
on the knowledge and experiences of the observer. Although this approach can
be argued as being subjective it does give an insight into the value of supporting
physically based simulation in an interactive VR context. An impression of users’
emotional response to each case study can also be gained.

Fifteen test subjects were given an opportunity to scrutinise and in the rel-
evant cases interact with each case study. For each case study the question:
“What was your impression of the motion?” was asked and the resulting remarks
recorded. Tables showing the remarks made by each of the volunteers are shown

in Appendix F.
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Test subjects commented to varying degrees about the motion they had seen
but the general consensus was that for each case study the motion was indeed
believable. The only case study which caused some conflicting opinions was the
Bucky ball simulation §5.2.3. Three of the volunteers said that the simulation
gave them the impression of the viewpoint being moved in and out rather than
the structure pulsating. Another three likened the simulation to a heart beating,
one person was reminded of the universe expanding and shrinking. The remaining
eight volunteers considered the motion to be ‘correct’ or at least plausible.

The interactive examples generated a noticeably greater degree of enthusiasm
amongst subjects which can be seen from the comments made. On average the
tests took between half an hour and forty five minutes each depending on the

enthusiasm of the particular volunteer.

5.9 Summary

In this chapter we have shown that a wide range of different kinds of simulation
are possible within the Iota framework. The power of dynamic restructuring is
used very effectively in the Jacob’s ladder example and the benefit of the ad-hoc
and physical modelling combination is illustrated in the Newton’s cradle. More-
over, user interaction is relatively easy to incorporate and significantly enhances
the simulation. It has been suggested that participation improves the user’s per-
ception of a simulation. Both the Jacob’s ladder and Newton’s cradle simulations
are demonstrated in the context of the AIG laboratory model. Finally an evalua-
tion was carried out in three parts. First a comparison of the performance of the
lightweight simulation of a Newton’s cradle and the simulator intensive Jacob’s
ladder. Second user trials were carried out to assess whether or not the motion
of objects in each case study was plausible, and third a discussion of the level of

difficulty of implementing each case study was presented with an analysis of the
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type of programming required to implement applications in Iota. The findings of
this evaluation are that there is a performance penalty to be paid through the use
of Perl as a high level development language, however implementing applications
can be easier. The majority of test subjects, from a sample of fifteen, considered

the motion exhibited by models in each case study to be plausible.



Chapter 6

Further work and conclusions

n order to summarise the scope of the lota framework we begin this chapter
I with a discussion concentrating on the classes of applications that could be
implemented within the framework. Following this, possible suggestions for future
work are made, and finally this thesis is concluded with a discussion of the relative

merits of the approach and a summary of the elements within the framework.

6.1 The Iota framework: Application areas

The main application areas of the lota framework are categorised as physically
based modelling in simulation, visual, educational applications and entertainment
applications. Each of these is described with examples to give a clearer impression
of the scope of the framework.

In the category of physically based simulation it is fair to say that many par-
ticle based models can be simulated within Iota so the typical kinds of particle
based simulations used for modelling crowds, flocking behaviour, fire, gases and
other similar effects can be simulated. These models have been used in serious
applications, for example Colt VR [COL] use particle based approaches for sim-

ulating evacuation procedures in buildings. They use this approach to analyse
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the ability of a crowd to escape from a building during a disaster such as fire or
flooding.

A number of serious applications can benefit from some level of physical simu-
lation for visual purposes. In particular a greater impression of realism or presence
can be achieved by providing rich behaviour through the use of simple physical
simulations. For example applications for designing large models of buildings, off
shore rigs, cities, theme parks and other similar installations could benefit from
physical behaviour for modelling a variety of real world objects.

Educational applications for interactively teaching elementary physics could
be built within the framework. This particular suggestion was an unsolicited
comment made by a participant F.15 during the user perception tests described
in the previous chapter.

Physically based simulations of the type which can be carried out within
the lota framework could be used in VR entertainment applications. Math-
Engine [W0099] implement similar simulation techniques for use in gaming and
entertainment applications.

Finally, Iota’s simulator is not appropriate for use in precision assembly and
maintenance tasks or applications requiring robust satisfaction of a large number
of constraints within the same articulate. The simulator component currently
used was designed for use in desktop VR applications using physically based
modelling and so does not contain a variety of different techniques for solving
overconstrained, underconstrained or ill conditioned systems. It is this that limits
the scope of its applicability rather than any failing in the design of the framework

itself.
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6.2 Further work

The development of the Iota framework has provided an answer to the question:
what are the core elements required for physically based simulation in VR? How-
ever, many questions have been raised as a result of the work described in this
thesis. Further work can be conducted in one of two general categories; devel-
opment and analysis which are described in the following section. In terms of
development a number of issues are worthy of consideration, in particular model
generation and simulator functionality.

Another area worthy of further research is physically based simulation in a
distributed VR context. The work described in this thesis has only considered
single user VR but many interesting issues would have to be handled in the
distributed case. For this reason, further work is considered in two subsections,

one dealing with general enhancements and the other with distributed VR.

6.2.1 General enhancements

Model generation is currently difficult so interactive generation of models to sim-
ulate is one possible approach for relieving some of the scripting burden from the
programmer. Although a more user friendly approach might be a combination
of procedural and interactive model generation, as purely interactive model gen-
eration could potentially be tedious. Much thought would have to be given to
the mechanisms by which a user may interactively build a model and the type of
building blocks to make available. The disadvantage of making model develop-
ment easier is that much of the current flexibility in lota would be lost and the
user would be forced to work with the tools given. Thus it can be argued that the
freedom for innovative design is worth the inconvenience of handcrafting models;

necessity is the mother of invention.
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The simulator functionality is currently rather basic, but the simulator is ex-
tensible and alternative solvers, orientations of bodies and a variety of different
types of constraints could be incorporated. Although the simulator is fairly sim-
plistic, it has been sufficient for the examples in this thesis. It can be argued
that the simulator contains enough functionality for physically based modelling
in VR, as long as the objective of simulating only plausible behaviour remains
true.

Finally a number of different types of analysis could be carried out. Firstly
it would be interesting to release the framework to a number of developers to
see how easy or difficult it may be in practice to develop an application within
Iota. This was considered to be an inappropriate exercise within the scope of a
PhD largely because the Iota implementation is a prototype. Secondly it would
also be interesting to analyse how much performance gain is achieved through
complexity management of models and adaptively adjusting the level of detail of
simulations. Finally it would also be a good exercise to analyse how quickly a

new component could be integrated into the framework by a novice developer.

6.2.2 Physically based modelling in distributed VR

One of the more recent challenges in the field of VR is represented by the area of
distributed VR. There are still many issues which need to be resolved in terms
of where the master representation of the VE’s model of reality exists together
with how and when information is distributed to other systems. Furthermore,
questions exist in terms of how to handle delays across networks and synchroni-
sation of users’ views. Many of these types of problems have been addressed in
the DEVA framework implemented by Pettifer [Pet99]. He provides a metaphor
which maintains consistent world behaviour. The details of the specific rules used

to govern the physics of the world can be coded within his framework. The work
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has been biased towards maintaining consistency and handling issues related to
distributed VR and Pettifer has not as yet considered the specifics of physically
based modelling.

To be able to simulate complex behaviour of objects in a distributed context
would require resolution of still unanswered research questions. Potentially, the
concepts in Iota could be applied within the DEVA framework but as the two
systems were developed independently, this would involve significant implemen-
tation effort. Incorporating physically based modelling adds a large degree of
complexity to the problem of distributed VR.

Distributed VR generally uses a client/server model, where the server stores
the VE, and clients provide I/O to it. There are three alternative methods which
could be used to implement this type of architecture. The first and simplest is
to maintain synchronisation across server and clients and the simulation runs
at the speed of the slowest client. This approach has the benefit that little
drift occurs in solutions as they are held either in one simulation (server), or
synchronised identical simulations in clients. The main disadvantage is that the
slowest machine connected controls the rate of simulation.

Another extreme is to maintain both client and server asynchronously, there-
fore potentially allowing clients to be out of step with each other. This is a
satisfactory approach for representing avatars coexisting in a VE for example,
because the server will maintain an up-to-date world state. However it is difficult
to fit physically based modelling into this scenario because clients may run at
different frame rates which do not coincide well with simulation timesteps. State
drift which may result in each client’s simulation diverging can become a signifi-
cant problem as each simulates the scene at different points in time. Furthermore,
complex user interaction with the scene would present significant problems as the

implication of any one person’s modifications would be difficult to interpret in
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the context of other clients’ state.

A possible solution to this problem would be to compromise and to some
extent decouple the clients from the simulation in the server. The simulation
would still be carried out in discrete timesteps, but the client would need to
correctly handle input and output for missed timesteps. A simulator would then
only accept input from clients when they can supply it, and send screen updates to
clients which are ready. Thus interaction with the scene would not be a problem
in such an architecture. An impression of asynchronous behaviour is given to
clients, but the simulation is maintained synchronously. Ultimately the simulator
would have more control over clients than in our single user implementation. A
workable approach to implementing this type of system would be to make the
client download a script representing the scene from the server and run it as
the client’s local perception but exchanging data with a single simulator in the
server. This fits well with the Iota approach of using scripting to provide high

level control and communication.

6.3 Conclusions

We conclude by advocating the framework proposed in Chapter 4 for physically
based modelling in VR. This framework is designed for use at the middleware level
by application developers as such it is designed with maximum customisability
and flexibility in mind. The Iota framework is not perfect and the relative merits

of the approach are described in the following sections.

6.3.1 Relative merits of Iota

Iota is the realisation of an approach towards providing sophisticated behaviour

in VR, and represents a possible strategy that could be applied to wide ranging
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applications. For example, in large models of structures such as oil rigs [CHK98]
it could be appropriate to simulate the behaviour of chains and pulleys, virtual
actors transporting complex objects from one location to another or even he-
licopters landing and taking off from a helipad. These types of sophisticated
behaviours add complexity to the VE and it is difficult to know the demands
imposed on a general simulator in advance.

The main disadvantage of this approach is the added performance penalty
paid for making calls to C/C++ through a high level scripting language but
this is considered to be a worthwhile trade-off as the benefits gained outweigh
the small performance cost. Furthermore, as computer hardware capabilities are
rapidly increasing, it is argued that this will not be a major issue for long. An-
other source of problems is Iota’s solver; it was intended to be general purpose
and functional but not the main focus of research effort and as such is far from
optimal. A number of issues would need to be resolved before Iota’s solver would
be appropriate for use by a commercial organisation, in particular an increase in
the diversity of constraints and joint types possible would be desirable. Moreover,
the convergence of the solver could be further improved by incorporating alterna-
tive solution techniques, although to be fair it is relatively robust (compared with
Diffpack) for small scale simulations. Finally, although concepts are provided for
interaction with the simulations little supporting high level functionality has been
implemented within Iota. Certainly significant improvement in terms of the API
for implementing simulations would be gained by providing suitable methods for
handling user interaction.

Although there are a number of disadvantages with the specific prototype
implementation used to illustrate the Iota framework, it is argued that the ad-
vantages more than compensate for them. Firstly the most novel and powerful

advantage is gained from the ability to dynamically restructure scenes not least
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because it provides a mechanism for a simulation to cope with user interaction.
Secondly, the combination of particle and articulated rigid body systems provides
a diverse range of behaviours. Consequently, the implementation is sufficiently
general purpose to be able to simulate a wide range of physical systems which
can be modelled using such methods. Finally, Iota is both extensible and flexi-
ble meaning that the programmer is not forced into following a strict prescribed
convention. If programmers want to supply additional functionality then they
are free to do so. Also if an approximate model is considered more suitable for a

particular simulation then this is not discouraged.

6.3.2 Dynamic restructuring

One other important issue not often catered for in VR or even animation sys-
tems is dynamic restructuring of scenes. lota’s simulator provides mechanisms
to restructure scenes, primarily through combine and separate routines. These
cause the underlying scene graph to reorganise itself, maintaining entities which
do not interact in independent containers (articulates).

An alternative approach is presented by Witkin et al. [WGW90]. Their ap-
proach divides the world of objects into separate entities possessing attributes
relating to their state and the constraints imposed. Each entity must be able
to report these, together with the constraint force. From this information they
dynamically construct the constraint equation and the equations of motion gov-
erning the system, these are then solved using traditional methods.

The advantage of Iota’s dynamic restructuring is that the solver is not involved
in reorganising the scene graph. Quite simply, the scene is restructured and the
problem reposed to the solver. This approach means that the new problem does
not lead from the previous problem. This is indeed a suitable choice as a combine

or separate does dramatically alter the simulation. Dynamically restructuring
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the scene can be exploited to a significant degree in VR, even as far as the
simulator system level. A simulation could centre around and propagate with
the user. In other words, as the user moves through the environment, so could
the simulation. Objects could be dynamically added and removed (or activated
and deactivated) from the current system, articulate or body thus significantly
managing the complexity of simulations. Furthermore, simulations could become
more sophisticated as the user approaches them and could be approximated while
the user is too far away to appreciate any subtleties. The concepts required to
perform this type of scene management already exist in lota although some further

development would be required to provide such general purpose functionality.

6.4 A Summary of the Iota approach

We argue that to successfully simulate physical behaviour of objects in VR re-

quires a flexible high level development environment which:

e Does not tie the developer to a particular way of achieving the result

Provides a robust physical simulator to use if and when desired

Permits ad-hoc modelling within the context of physics

Provides a mechanism for dynamically altering the scene graph in order to

handle user interaction

Has control over a VR kernel

These factors should be incorporated into the framework shown in Figure 4.1.
The power of this particular approach lies in the fact that a high level language
is used to drive the VR application. In this framework, the simulator and VR
system are seen as providing low level services and can be viewed as the kernel

of the system.
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An exchange of information between the simulator and VR kernel occurs
through the scripting language, having the benefit that both could be developed
independently and significant customisations could be made at the scripting level.
A direct exchange of data occurs between the scripting environment and the
simulator or VR kernel when a service is required by the scripting environment.
The callback mechanism enables the simulator or VR kernel to request a service
from the scripting language, such as to compute a bond force or act upon a mouse
event.

This framework also allows for a combination of ad-hoc and physical mod-
elling, as the scripting language provides a powerful and flexible medium for
describing ad-hoc models to simulate, only calling upon the simulator to advance
the frame. This contributes to maintaining consistency in the simulation. In
particular by making a simulation more manageable there is less likelihood of the
solver failing to converge. Naturally, if a more physically based model is desired
then further services can be requested from the simulator.

Within Iota the simulator’s ability to dynamically restructure scenes enables
interesting behaviour and valid scene graphs to be maintained even after the user
has changed a model. This has been shown to be a very powerful mechanism for
controlling a simulation as illustrated in the Jacob’s ladder example. Further-
more, since dynamic restructuring reposes the problem of simulating the model,
a mechanism exists for the user to intervene and dynamically break or attach
components.

It is acknowledged that the behaviour of models can be difficult to describe
but this is a problem particular to the nature of physically based modelling, and
as such is not a failing in our approach. Once a model had been conceived,
implementing the logic to govern a simulation is comparatively easy. Due to the

power afforded by the flexibility of using high level scripting languages, their use
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is highly recommended.

Finally, the Tota approach is demonstrably flexible and powerful and this
statement has been backed up by the results and discussions presented. We have
successfully shown that physically based simulation adds reasonable interest to
a VE and as such is worth the effort to provide. Furthermore, being able to
dynamically manipulate the model and affect significant changes at runtime has

been shown to be crucial to any general purpose physical simulator for VR.



Appendix A

Algorithm for computing an Iota

transformation matrix

his section contains the algorithm used to compute transformation matrices
Tbased on any two arbitrary co-ordinates to apply to unit sized objects cen-
tred at the origin. To find a transformation matrix appropriate for transforming
an object from MAVERIK’s local co-ordinate system to a location in world space
characterised by two points. It actually works by performing a series of transfor-
mations (centre at origin, align with axes and then a resize) from world space to
the shape’s local co-ordinate system. This matrix is subsequently inverted to give
the desired mapping. It may appear unintuitive to perform these transformations
in reverse order but it is in practice much easier to use existing MAVERIK func-
tionality to align a shape with axes, rather than transform an aligned shape to
an arbitrary orientation. A pictorial representation of this algorithm is shown in

Figure A.1.
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Algorithm 8 Algorithm to compute a transformation matrix for a MAVERIK

shape

Require: endpoints posl & pos2

Ensure: posl != pos2

1: matrix _return_value = unit matrix

2: distance = (pos2 - posl)

3: distance *= 0.5

4: Direction move_by = posl + distance

5: posl -= move_by

6: pos2 —= move_by

7: matrix_return_value *= translation matrix (-move_by)
8: roll_angle = atan2 (pos2.gety (), pos2.getx ())

9: rot_matrix = mav_matrixDef (180/PI*roll_angle, O, O, 0, 0, 0)

e S e G S O
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posl *= rot_matrix

: matrix_return_value *= rot_matrix

: pitch_angle = atan2 (posl.getx (), posl.getz ())

: rot_.matrix = mav_matrixDef (0, O, 180/PIxpitch_angle, 0, 0, 0)
: posl *= rot_matrix

: matrix_return_value *= rot_matrix

: stretch = unit_matrix

stretch.mat[2] [2] = .5/posl.z

: matrix_return_value *= rot_matrix
: matrix_return_value = mav_matrixInverse (matrix_return_value)
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Figure A.1: Approach taken to compute an Iota transformation matrix



Appendix B

Callbacks background

his appendix provides some information on callbacks, their implementation
Tand the additional functionality provided for creating Perl callbacks. Call-
backs allow C programmers to gain some of the benefits of object-oriented (OO)
programming without resorting to an OO language such as C++. The mechanism
allows functions to be associated with specific instances of structures!, allowing a
clean interface between the core of the application (or system code) and the rest
of the code.
A callback at its simplest is shown in Figure B.1; here the application registers
a function to be called under some predetermined event, perhaps as an error
handler. Setting and invoking the callback works by passing a function pointer
through the Application Program Interface (API) to a function which retains it.
Later another routine calls the retained address, resulting in a call to the function.
It is usual for APIs to provide low level services which are called, but what is
special about callbacks is that now the low level code uses callbacks to delegate
work to higher levels.

The next example, shown in Figure B.2, creates a function specific to an

IThis goes some way towards implementing OO principles. Strictly speaking OO requires
support for classes, objects, inheritance and polymorphism. Callbacks provide the first two of
these and to some extent the latter two, but not in a ‘type safe’ manner.

204



APPENDIX B. CALLBACKS BACKGROUND 205

instance of a structure, akin to implementing a ‘Class’ in OO. A few variations
exist on this theme, but only one is shown. Here a data structure is malloced
which represents a class. This could take place in either the user-code or the low
level code. The call to register the function passes the data structure and the
function address, then the function address is written into the data structure.
There is now a relationship between the data structure and the function. This
process may be repeated any number of times with different instances of the
same data structure and different functions. At a later point an action may be
performed on a data structure which invokes a the callback. Performing the
action on different instances of the data type will result in (potentially) different
functions being called. It is often beneficial to pass the data type to the function
enabling it to interpret the context it was called in and giving it access to other
data available within.

The final example deals with extending this mechanism to allow existing C
callbacks to have Perl callbacks mapped on top of them without modification to
existing code. Figure B.3 shows how this is done: the C function registered with
the API cannot be a Perl function so instead we write a function explicitly for
handling and then forwarding Perl callbacks. It works by keeping a copy of Perl’s
function and data structure addresses keyed by C’s data structure address and
performing a further callback up to Perl with them. Obviously if the C callback
does not pass enough context information to determine which Perl object and
function to use, then this technique cannot be used.

It is now possible to have a mixed environment where some callbacks are
satisfied by default C functions, others are satisfied by scripted Perl functions, and
yet others are delegated by Perl back to predefined C functions where performance

might be critical.
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Figure B.1: A simple callback example. An application registers a function
to be called under some predetermined event. Step 1: A user
call is made to register a callback. Step 2: register_callback
places an address in a variable. Step 3: At a later point an event
causes the callback to be triggered by calling call_callback.
Steps 4 & 5: The address is retrieved from the variable and
called.
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&callbackfnz

initialise callbackfnx

&callbackfny

ﬁcallbackfnx
’

datal

, API
\ Ill®

* ’
register callback call_callback (a)
&callbackfnz
initialise callbackfnx
&callbackfny
&callbackfnxq.
datal®, ‘
! \ API
\® \@
. \
call callback (&datal)|X
———
>
®
register_ callback call_callback (b)

Figure B.2: Callback used to model OO methods. Step 1: A call is made
to register a callback against a structure (object). Step 2:
register_callback places the callback address in the struc-
ture. Step 3: The event is triggered and a call is made to
call callback. Steps 4 & 5: This routine retrieves the func-

tion address from the ‘object’s’ data structure and makes the
necessary call.
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Perl

Perl/C
XS

Figure B.3: Enabling callbacks into Perl.

initialise

datastructure
callbackfnx

\

»&callback_handler

datal

@\register_callback (&datal, &callbackfnx)

registex\callback

callback_handler

]

\

étruct addr |Perl callback addr .
g
@ N

-4 L

“f&datal |&callbackfnx]

.

- J

\register_callback (&datal, &callback_handler) ®

\

Y

®
® call callback (&datal)
1

= 4\

register callback

call callback

This time the callback is reg-
istered through a routine which performs some extra house-
keeping before forwarding the callback information to the real
register_callback routine. Step 1: Register the callback with
a register_callback routine which actually resides in an XS
file. Step 2: The object address and its associated callback
are recorded in a hash table, and the C function to register
the callback is invoked with the address of a redirector func-
tion callback handler. Step 3: The C register callback routine
records the callback address (always callback handler if called
from Perl) in the data structure. Step 4: A callback is invoked
on the object. Step 5: Invokes the callback recorded in object
data structure (callback handler if callback was registered by
Perl). Step 6: callback handler locates and runs the real Perl
function.
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Derivations

erivations are provided in this appendix for performing transformations
D about arbitrary lines, calculating the moment of momentum for a particle
system and performing a singular value decomposition on a matrix (SVD). Finally
some derivations to allow the implementation of a non-linear equation solver using

the Newton-Raphson method are described.

C.1 Derivation of an Iota transformation matrix
for rotating a point about a line

Equation C.1 shows the relationship between a point’s position before a rotation
(r) and after (R), about a unit direction vector n. It can be rearranged into a

form given in Equation C.2.
0
R—rztaniﬁ/\(R—i—r) (C.1)

R =cosf.r + (1 —cosf)(n.r)n +sinf.n) Ar (C.2)

IR =[X,Y,Z], r=[x,y, 2] and i = [I1, s, 3] are referred to the unit vectors
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i, j, k, then a further rearrangement of relationship C.2 can be made to become

(XY, Z] = cosb.[z,y,7]

+ (1 —=cosf).(lhx + by +132).[lh, ls, ls] (C.3)
7k
+ sinf. | [y I, I

x Yy z

Equating corresponding components leads to

X = J[cosO+ (1—cosh)l?] =
+ [(1—cosO)lly —Il3sinf] y (C.4a)
+ [(1—cosO)lils + lysinf] =z

Y = [(1—cosf)lsly —I3sinf] =z
+  [cos@+ (1—cos®)3] y (C.4b)
+ [(1—cosO)lsls +11sinf] =z

Z = [(1—cosO)l3ly + lysinb] =z
+ [(1—cosf)lals —Il;sinf] y (C.4c)

+  [cosf+ (1 —cosb)i3]

N

These relationships can be put into a more compact form by the introduction
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of the three matrices A, B and C which are defined by

A = [a;]=cos0I+ (1 —cosf).B+sinf.C (C.5a)
2 Ll Ll
B = [byl=| 1l 2 I (C.5b)

bl bl 3

0 =l3 I
C = lajl=|1a 0 -l (C.5¢)
—l, L 0

It has been necessary to adapt this equation, extending it to work with a rotation
vector whose length represents the angle #. This allows the result of a cross
product to be input into the equation to be derived, and also reduces the equation

to be a function of three unknowns from four. The length of a vector L,

is given by (/L% + L% + L% which corresponds to the angle . The unit direction
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vector n becomes

=>

L, | /0

L, | /VLi+L3+L

212

(C.8)

(C.9)

A becomes significantly more complex as a result, as shown in Equation C.10.

A

C.2 Derivation of moment of momentum

cos (\/L% + L3+ L§>

lfcos(\/L%+L§+L§)

L2+L2+L2

sin(, /L§+L§+L§)

VI

1 00
010
0 01

L? LiL, LiLs
LiLy, I2 L,Ls
LiLy LyL; L2

0 —Ls Ly
Ly 0 —-IL
—L, L 0

This derivation starts with the fundamental equation

G=H

(C.10)

(C.11)
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H =) rAmr (C.12)

=Y r Amw for a rigid body (C.13)
= (Z mr2) w— Y (mrw)r (C.14)

It is not immediately clear how to separate w out from this since r is not con-
stant for the summation. Studying the individual components of the expression

provides a solution:

H, Wy T
", | =X m?| w, =Y m(zw, +ywy + 2w,) | y
H, Wy Z
Wy mziw, + mryw, + mrzw,
= z mr? Wy - Z MIYWy + myzwy + myzw,
w, mrzw, + myzw, + mztw,
Wy mz? mzy mzz Wy
=> m(z®+y* +2°) Wy > | may my* my:z Wy
W, mxz myz mz? W,
A —-F —-F
=H=| -F B -D |w
-F -D C(C
where

A=) m(y’*+2°) D =) myz

B =Y m(z* + 2% E=> mz

C=> m(*+vy°) F=> mxy

Moments of Inertia Products of Inertia
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From this we have derived the well-known inertia equation, allowing inertia to be

calculated for bodies composed of particles.

C.3 Singular value decomposition

Singular Value Decomposition (SVD) is a technique whereby a series of three

matrices U, W and V have the property:

W1 0 0
0 wy ... O

A=TU. ’ A (C.15)
0 O Wy,

A is considered to be square for the purposes of this discussion, though the theory
can be extended for other cases. The decomposition is useful because the values
of wy, wsy, ...give an indication of how near-singular the matrix is and hence
diagnose precisely what the problem is with matrices which cannot be inverted.
While performing a SVD will diagnose the problem, it does not however provided
a solution.

Inverting a (square) matrix once it has been decomposed is relatively straight-

forward, being simply

A~ =V [diag(1/w;)].U" (C.16)

Matrices which are near-singular will have one or more small values w, while one
which is actually singular will have zeros. Clearly 1/w; in these cases will yield
a value approaching oo which is why problems arise when inverting. A condition
number can be used to gauge how il conditioned a matrix is — very large values

will cause problems.
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A simple solution to inverting ill-conditioned matrices is often possible: in
cases where 1/w; are considered “near-infinity” they can simply be replaced by
zero. This removes components which “pull” solutions of towards oo along a

direction caused by round-off errors.

C.4 The Newton-Raphson technique

This section provides a derivation and the code for solving simultaneous equations
using Newton’s Method. It describes the algorithm used to solve a series of N

relations which are to be zeroed by finding appropriate values for z;_ .

E($1,$2,...,33N):0 i:1,2,...,N (C17)

C.4.1 Solver algorithm

In the neighbourhood of x, each of the functions F; can be expanded in the Taylor

series
Fi(x + 0x) x) + Z (ij + O(6x?) (C.18)

A matrix of partial derivatives appearing in Equation C.18 is the Jacobian Matrix

J

_ 4R,

N (SI]’

(C.19)
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The Jacobian for a set of four simultaneous equations would therefore be com-

puted from the following partial derivatives:

3Fy 8Fy 0F; OF;
dxy 613 dx3 dxy

3Fy OFy 0F; §Fy
dx1 0xs dx3 x4
Jy

OF3 0F3 0F3 0F3
dx1 0xo dx3 04

0Fy 0F4 0Fy 0Fy

dx1 0x2 dx3 0x4

Equation C.18 may be written in matrix notation as

F(x + 0x) = F(x) + J.0x + O(6x?) (C.20)

By neglecting terms of order x? and higher and by setting F(x + 6x) = 0, a
set of linear equations may be obtained for the corrections dx that move each

function closer to zero simultaneously, namely

J.ox=-F (C.21)
This equation may be rearranged to be

6x =—-J'F (C.22)

Now this equation may be solved by an LU (Lower and Upper triangle) decom-

position, and the computed éx added to the solution vector x.

x' =x+ 0% (C.23)

where x' is the new x.
0x is known as the “Newton Direction”, and is the initial direction which will

reduce the value of all the equations, but can fail to converge to a solution if
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simply added to x as in Equation C.23. §C.4.2 provides a solution to this.

C.4.2 Linesearch algorithm

The linesearch algorithm attempts to find a reasonable distance to travel along
the “Newton Direction”. It works by investigating the impact of accepting the
whole step, and then back tracking if need-be until it reaches an acceptable step.

Without going into any detail, a value A is computed to be

N —b+ /b2 — 3ag'(0) (C.24)

3a

which is used during the backtracking operation. The details of how this is derived

can be found in [PTVF92].



Appendix D

Integration of C/C+ with Perl

erl has extensive support for integration with C and C++, whether it be to
P allow C to call Perl routines, or vice versa. In this section the technique by
which the simulator and MAVERIK have been interfaced within lota is described.
It is necessary to write an ‘XS’ file which describes function prototypes and is
pre-processed into true C/C++ for compiling.
Besides the XS file itself, an additional file, known as typemap is required
which instructs the pre-processor on how to convert to and from Perl data types.
A standard version is supplied which allows all the standard C types (e.g. integers,

floats, strings etc) to be mapped. The typemap file has three sections. The first

is a table of C/C++ types, and an arbitrary name for the data type it represents.

TYPEMAP

int T_IV
unsigned T_IV
long T_IV
char T_CHAR
char =* T_PV

Similar C types can be mapped to the same tag, allowing their conversions to be
handled in a similar fashion. The default tag names have been constructed as

follows: T_ for Type, I, CHAR and P for Integer, Character and Pointer, and V for
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Value. The following definition block, preceded with an INPUT contains C code

to coerce a Perl type into a C type.

INPUT
T_IV

$var = ($type) SvIV ($arg)
T_CHAR

$var = (char) *SvPV ($arg, na)
T_PV

$var = ($type) SvPV ($arg, na)

The Svs stand for Scalar Value, to be contrasted with Arrays and Hash Tables.

A similar section is then required for converting C types back to Perl.

OUTPUT
T_IV
sv_setiv ($arg, (IV) $var) ;
T_CHAR
sv_setpvn ($arg, (char *) &$var, 1) ;
T_PV

sv_setpv ((SV *) $arg, $var) ;

Now that these relationships have been built, the task of writing XS code is made

much simpler. An example C function such as

int Validate (System* this_system, int verbose)

{
status = ...

return status ;

could be restructured as an XS file with little modification, to become

int

Validate (system, verbose)
System* system
int verbose

CODE:
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RETVAL = ...

0UTPUT:
RETVAL

The xsubpp programme manipulates this file, using the typemap file, to C which
can be compiled. xsubpp can also create Perl methods for C++. Functions for

converting objects must be explicitly added to the typemap file.

TYPEMAP
System* 0_0BJECT

INPUT
0_0BJECT
if (sv_isobject($arg) && (SvTYPE(SvRV($arg)) == SVt_PVMG)
& correct_type ($arg, \"$type\"))
$var = ($type)SvIV ((SV*)SvRV($arg));
else
{
warn (\"${Package}::$func_name(): $var is not a $type\") ;
XSRETURN_UNDEF;
}
OUTPUT
0_0BJECT

sv_setref_pv ($arg, CLASS, (void *) $var) ;

The INPUT section does a number of consistency checks to prevent bad accesses
to data structures. The XS file may now map Perl object methods to C++ ones.

For example:

System*
System: :new ()

void
System: :DESTROY ()

void
System: :display ()

int
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System: :my_id (O
CODE:
RETVAL = THIS->my_id ;

OUTPUT :
RETVAL

will create the constructors, destructors and other methods for an object called
System. There are a number of points which can be made about this example.
Not all the methods have an explicit function body: these cases will be assumed
to bind to a C function or C++ method with the same name and arguments. A
special case of this is the System: :DESTROY method which, because it is the Perl
destructor, will delete the object which in turn will call System::“System ()
for class cleanup. The implementation still needs to be done with care: some
underlying C structures may be static, some may be malloced and others may
be local to a C function. Some caution and understanding of the underlying C is
required to find the demarcation between C’s memory management and Perl’s.
In common with many scripting languages Perl is responsible for its own
memory management, not the user. That is, it keeps reference counts to allocated
memory items such as variables and when the last reference is finished with
the memory is released. This makes manipulation of objects with pointers or
references much less error-prone as neither dangling pointers nor unreferenced
memory are possible within Perl’s memory area. An object’s DESTROY method
will only be called when its last reference is removed. This means that users
cannot fall into the traps which they are exposed to when manipulating the
underlying C++ objects directly. Naturally, this is a huge benefit to a scene

description language.
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D.1 An example of passing a function reference
to C

This section describes the basis on which Perl callbacks are built. A routine
perl_call_sv allows a call to be made to a Perl function and removes all the
complexity which would otherwise be required to cope with the alternate ways of
making subroutine calls as well as providing a handle to a subroutine regardless
of the methods used to create it.

An example shown in Figure D.1 taken from the perlcall(3) manual page,
illustrates this nicely. In this example, the Cal1SubSV has been implemented as

an XS module as shown in Figure D.2.

CallSubSV("fred") ; # Text, assumed to be function name
CallSubSV(\&fred) ; # Explicit address of function
$ref = \&fred ;
CallSubSV($ref) ; # Function address held in variable
CallSubSV( sub { print "Message from perl\n" } ) ;

# Inlined anonymous code call

Figure D.1: An example illustrating some of Perl’s function call mechanisms

void
CallSubSV(name)
SV * name
CODE:
PUSHMARK (sp) ;
perl_call_sv(name, G_DISCARD|G_NOARGS) ;

Figure D.2: C XS module which accepts a function and calls it

Taking a copy of the SV * passed is all that is required to retain the subroutine
handle in question to implement callbacks into Perl. Another function, the ‘exe-
cute callback’ function can then initiate the callback through the preserved SV *

sometime later.
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Simple user scripts

ystems, bodies, particles, connections and cosmetic connections are all in-
S stantiated with a method called new. To give an overall impression of the
Perl API at this level, we present three simple scripts and describe how they
work.

The first example, shown in Figure E.1, creates a system with one body
falling under gravity. The default system contains one body composed of just one
particle, and both are assigned to variable names. The position of $particlel
defaults to the origin, and that of $particle2 is set explicitly to (30, 0, 0).
The direction in which gravity acts is set and the system is simulated.

This simple example illustrates a number of key points, firstly when a new
system is created the constructor of a body is implicitly called which in turn
implicitly creates a particle. Secondly, further particles are created explicitly and
added to the body.

Consider now a similar scene, but with a force function between the two
particles instead of a cosmetic bond. The new script describing this scenario is
shown in Figure E.2. Recall from Figure E.1 that both particles existed within the
same body as it was rigid. In this example however, the particles move within
the restrictions imposed by the force function. Moreover, the predefined force

function is passed as a textual string to the new method of Bond. This string is
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# Create system

$system = new System ;
# Set gravity vector
$system->gravity (Direction (0,-1)) ;

# Name default body

$bodyl = $system->bodies(0) ;

# Name default particle

$particlel = $bodyl->particles(0) ;

# Create, name and set the position of
# a new particle
($particle2 =
new Particle)->position (Position (30,0,0)) ;
# Create a cosmetic bond between
# particlel and particle2
new CBond($particlel, $particle2) ;

# Event Loop
# Interaction and rendering would go inside this

# loop too
while (1)
{

$system->advance_frame () ;

}

Figure E.1: A Perl script and corresponding scene
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# Create system

$system = new System ;

# Set gravity vector (z defaults to 0)
$system->gravity (Direction (0,-1)) ;

# Name default body and its particle
$bodyl = $system->bodies(0) ;
$particlel = $bodyl->particles(0) ;

# Create a new body

$body2 = new Body ;

# Name body2’s default particle and

# set its position vector

$particle2 = $body2->particles(0) ;
$particle2->position (Position (30,0,0)) ;

# attach a predefined force callback function called
# force_functionl to act between particlel and

# particle2

new Bond($particlel, $particle2, "force_functioni") ;

# Event Loop
while (1)
{
$system->advance_frame () ;

}

Figure E.2: A Perl script describing two particles connected by a force func-
tion
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matched with a force function of the same name and the appropriate computation
is carried out.

The force function can be defined in a Perl subroutine anywhere in the simu-
lation file or imported from another package and passed to new using any of the
mechanisms described in Appendix D.1.

Now suppose a user wants to change the script further to describe a scene
with two bodies connected by a hinge the modification to the script is trivial. In
this case, the hinge is simply created by a combine call. The positions of the
particles combined are not required to be identical as the solver will be called

upon to impose and maintain the hinge constraint.
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$system = new System ;

$system->gravity (Direction (0,-1)) ;

$bodyl = $system->bodies(0) ;

$particlel = $bodyl->particles(0) ;

($particlela =

new Particle)->position (Position (-30,-35,0)) ;
new CBond($particlel, $particlela) ;

$body2 = new Body ;

$particle2 = $body2->particles(0) ;
$particle2->position (Position (0,10,0)
($particle2a =

new Particle)->position (Position (35,-25,0)) ;
new CBond($particle2, $particle2a) ;

# Construct a hinge particle
combine ($particlel, $particle2) ;

# Event Loop
while (1)
{
$system->advance_frame () ;

}

Figure E.3: A Perl script describing two bodies connected by a hinge
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Results of user perception tests

his appendix contains the answers given by a sample of fifteen test subjects
Tto the question; “What was your impression of the motion?” for each case
study. The following set of tables summarise each test subjects responses to each
case study. Where there were two examples of the same case study (e.g. Newton’s
cradle and interactive Newton’s cradle) the more complicated one was used for

the trial. Note that this is relevant in the following cases:
Newton’s cradle - the interactive Newton’s cradle was used for the user trials
Articulating chain - the interactive example was used for the user trials

Rigid molecule - the case study showing a portion detaching off the model was

shown to all the test subjects

Each volunteer gave their permission for the following comments to be recorded
and agreed that they were an accurate representation of their assessment of the

case studies.
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‘ Name ‘ Case study ‘ Comment
Subject 1 | Newton’s cradle Motion is plausible
Jacob’s ladder Motion is believable
Shoal of fish Motion is plausible
Undersea model Motion is plausible
Articulating chain Motion is brilliant
Rigid molecule Motion is believable in the con-
text of the inertia change
Deformable molecule | looks like rubber
Bucky ball looks like a heart pulsating
AIG laboratory Cool!
Table F.1: Subject 1’s comments
| Name | Case study | Comment
Subject 2 | Newton’s cradle Motion is plausible most of the

time

Jacob’s ladder

I think that is plausible

Shoal of fish

Yes that looks like a shoal of fish

Undersea model

Yes I think that is plausible the
seaweed 1s nice

Articulating chain

Sufficient for me to accept as a
chain

Rigid molecule

Yes that looks realistic

Deformable molecule

Looks stretch

Bucky ball

Looks springy

AIG laboratory

It is realistic

Table F.2: Subject 2’s comments
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| Name

‘ Case study

‘ Comment

Subject 3

Newton’s cradle

The model could be richer but the
motion seems fine

Jacob’s ladder

I think that looks really good
even the way it hits and bounces
off - I can’t fault it

Shoal of fish

I can believe that to be the mo-
tion of a shoal of fish. The mo-
tion of individual fish could be a
bit richer

Undersea model

I believe that to be faithful

Articulating chain

The motion is a bit too heavily
damped but it seems realistic to
me ...good, I like it

Rigid molecule

I can’t fault it

Deformable molecule

Yes that looks good. Reminds me
of an elastic material, sagging and
a bit like jelly

Bucky ball

Yes that is good

AIG laboratory

Yes same as before, same models

Table F.3: Subject 3’s comments
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‘ Name

‘ Case study

‘ Comment

Subject 4

Newton’s cradle

That is quite nice. The elastic-
ity between the mouse and ball is
nice but a bit unintuitive. You
seem to model the motion of the
balls accurately

Jacob’s ladder

I can’t fault the motion, it is real-
istic. I couldn’t tell the difference
from the real thing

Shoal of fish

It looks fairly realistic when they
flock towards the mouse pointer
from a distance. It does look re-
alistic

Undersea model

Yes that could be a shallow wa-
ter simulation. It gives a realistic
impression of fish feeding in water

Articulating chain

I like that behaviour, the way it
copes robustly with large forces
looks realistic. The joints also
look realistic

Rigid molecule

That looks very realistic

Deformable molecule

Looks like a grocery bag, it is be-
lievable

Bucky ball

They are all realistic, I'm find-
ing it hard to think of comments
...can’t really criticise them

AIG laboratory

Very immersive, looks more tan-
gible and more interesting than a
static scene

Table F.4: Subject 4’s comments
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‘ Name ‘ Case study ‘ Comment ‘

Subject 5 | Newton’s cradle Seems to be behaving like a New-
ton’s cradle. A richer model of
string would have been nice

Jacob’s ladder This reminds me quite nicely of
the real thing

Shoal of fish Looks fish-like, it is realistic
enough

Undersea model The seaweed looks wriggly and

seaweedish. It seems reasonable
Articulating chain Nice, I like that, that’s good. 1
particularly like being able to at-
tach and detach portions

Rigid molecule Yes that looks realistic, for a stick
and ball model

Deformable molecule | A bit abstract but it doesn’t seem
unreasonable for modelling soft

objects
Bucky ball You can do hearts!
AIG laboratory Now that is pretty good, the mod-

els look even more believable in
context and the limitations some-
how become less of a problem

Comment: The interactive ones are more interesting
because you can’t do that with a cunning movie

Table F.5: Subject 5’s comments
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| Name

| Case study

| Comment

Subject 6

Newton’s cradle

Not damped enough but apart
from that it seems natural

Jacob’s ladder

Very realistic, especially the way
in which it sways. Looks large be-
cause of the inertia

Shoal of fish

That is just about believable
enough. It is adequate, more than
adequate

Undersea model

That is OK, the seaweed looks
like several straight bits with
hinges but it does look OK

Articulating chain

That is very good, probably the
best one motion wise. Very real-
istic

Rigid molecule

Very good, very realistic

Deformable molecule

Looks very realistic but it went
still a bit too quickly

Bucky ball

I don’t know about that one, it
gives the impression of the cam-
era moving in and out rather than
a structure pulsating

AIG laboratory

The cradle was very good, both
models seem to behave just as
well in context. It would have
been nice to see the Jacob’s lad-
der held by an avatar

Table F.6: Subject 6’s comments
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| Name

‘ Case study

‘ Comment

Subject 7

Newton’s cradle

Seems to be very accurate. Seems
natural and the interface is quite
intuitive

Jacob’s ladder

I like the way that the prop-
agation of ripples doesn’t seem
to affect performance. It still
behaves realistically even though
the model is more complex

Shoal of fish

Seems right

Undersea model

It’s fine, very nice

Articulating chain

I like the oscillations, it is very
good

Rigid molecule

That is quite natural

Deformable molecule

Yes, I think it is fine

Bucky ball

It is like a heart

AIG laboratory

More realistic, this really shows
the potential of the kinds of
things you can do. Could I play
for a bit longer please?

Table F.7: Subject 7’s comments
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‘ Name

‘ Case study

‘ Comment

Subject 8

Newton’s cradle

Yes, I'm convinced

Jacob’s ladder

That looks very realistic

Shoal of fish

That is amazing

Undersea model

I like that, I could believe that es-
pecially with a blue background
and some coral

Articulating chain

It does look realistic, seems to be
slightly damped a bit too much.
I'm looking for things the real
thing should do because the mo-
tion is so good

Rigid molecule

That is pretty realistic once you
work out what is going on. It
doesn’t look wrong

Deformable molecule

Looks OK, it’s a bouncy castle

Bucky ball

Convincing but a bit too regular
a structure to be interesting

AIG laboratory

That’s pretty good. I'm very im-
pressed by the Newton’s cradle
but the Jacob’s ladder falling off
the screen is a little odd

Table F.8: Subject 8’s comments
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‘ Name

‘ Case study

‘ Comment

Subject 9

Newton’s cradle

Yes, I'm impressed. All the subtle
movements help to make it con-
vincing

Jacob’s ladder

I’'m convinced by this one as well

Shoal of fish

It’s pretty plausible

Undersea model

I like the way one of the fish
comes in and takes a bit of sea-
weed. I'm convinced by that one
as well

Articulating chain

Apart from being a bit heavily
damped it is convincing

Rigid molecule

You can see the motion changes
as the portion breaks off, it ap-
pears to be realistic. It isn’t doing
anything obviously wrong

Deformable molecule

Yeah it’s realistic, the lack of
collision detection is a problem
though

Bucky ball

It looked like the image size was
changing rather than the nodes
moving apart

AIG laboratory

As convincing as they were on
their own. The context helps to
put the models into perspective.
It is easier to follow the motion
with other reference points in the
scene to compare against

Table F.9: Subject 9’s comments
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‘ Name ‘ Case study

‘ Comment

Subject 10

Newton’s cradle

Yes that’s quite good that

Jacob’s ladder

Yes it looks fairly realistic. Once
it has reached the end of its ac-
tivity it gradually straightens out
as one would expect ...except
it doesn’t appear to hang com-
pletely straight but that may or
may not be correct

Shoal of fish

I think it’s quite good, quite real-
istic

Undersea model

Yes, I think that is quite good

Articulating chain

Yes, 1 thought that was quite
good too. It illustrates disas-
sembly and assembly in a dy-
namic way. It doesn’t take ac-
count of assembly constraints but
then that isn’t the objective of the
exercise

Rigid molecule

Interesting illustration of varying
mass and inertia. This sort of
thing is important as a result of
some activity

Deformable molecule

Quite realistic but also shows dif-
ficulty in modelling complex or-
gans which would require more
processing power

Bucky ball

Yes, that is quite interesting the
system clearly has alot of poten-
tial. The approach is different to
alot of others

AIG laboratory

That is quite impressive, the sub
models actively behaving in a
complex environment simultane-
ously

‘ Comment:

It pulls alot of concepts together

Table F.10: Subject 10’s comments

237



APPENDIX F. RESULTS OF USER PERCEPTION TESTS

‘ Name

‘ Case study

‘ Comment

Subject 11

Newton’s cradle

Yeah it seems fine, I the consoli-
dation of a held set of balls with
a colliding set a bit surprising

Jacob’s ladder

Yes, plausible

Shoal of fish

Yes, that is plausible

Undersea model

The motion of the fish seemed a
bit too erratic but apart from that
it was OK. I found it a bit difficult
to see the fish dive down and pick
up the seaweed

Articulating chain

That is OK but I would expect
the links to rotate in more than
one axis. I believe it to be ac-
ceptable though.

Rigid molecule

Yeah seems plausible

Deformable molecule

Yeah all of the actual motion
seems fine. Lack of collision de-
tection is quite noticeable

Bucky ball

Yes it seems fairly plausible it is
a bit difficult to tell without some
context

AIG laboratory

Seems to be the same motion as
before, seems fine. It makes the
laboratory model more interac-
tive

Table F.11: Subject 11’s comments
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| Name

| Case study

| Comment

Subject 12

Newton’s cradle

It’s lovely, I love it. It’s really
nice. It’s really real in a way it
seems to respond to whatever I
am doing. It is very real

Jacob’s ladder

Nice, I love it. Unfortunately I
have never seen this toy before so
it is a bit more difficult for me
to interpret the movements. It
seems realistic

Shoal of fish

What I like here is that you can
see the fish from different angles
and this gives the feeling of re-
ality. It seems like the fish play
with each other as they swim.
This is how fish do swim, I like
this one

Undersea model

I like this, I like seeing the indi-
viduality in the fish, showing that
one fish has different behaviour

Articulating chain

I think this is a very good exam-
ple. I found the highlighting of se-
lected links and attaching and de-
taching very good. I could see the
potential of this for virtual magic
tricks

Rigid molecule

The motion is really good

Deformable molecule

Yes, it is really real. I can see how
gravity can change the shape of
the object so it is really real

Bucky ball

My mind went to the universe
which expands and shrinks. The
motion was excellent

AIG laboratory

It looks lovely for me, I did not
need to see the toys in this con-
text because I could appreciate
them on their own but I like them
in the lab model too. The toys
made the environment more in-
teresting because you could inter-
act with them

Table F.12: Subject 12’s comments
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| Name

| Case study

| Comment

Subject 13

Newton’s cradle

Yes, that is reasonable. It has
a soft feel to it somehow that I
wouldn’t have expected ...from
the interaction

Jacob’s ladder

Yes, that looks plausible

Shoal of fish

Yes, that looks very good

Undersea model

Yes, that looks pretty good again,
maybe the seaweed is a little less
realistic than the fish but there is
a definite sense of depth there

Articulating chain

Yes, that is pretty nice

Rigid molecule

Yes, that’s good, it might have
been helpful to see what it was
hanging from but yes it is fine

Deformable molecule

Yes it is believable, might be
clearer if connections were thin-
ner but it looks realistic

Bucky ball

At a faster frame rate it looks
like it is pulsating but at a slower
frame rate it looks like the cam-
era position is moved in and out.
It might have been nice to add
some variation in the oscillations
so that it doesn’t appear so uni-
form

AIG laboratory

Yes that’s good

Table F.13: Subject 13’s comments
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| Name

| Case study

| Comment

Subject 14

Newton’s cradle

In terms of letting go of the balls
the simulation behaves as one
would expect. The interaction
doesn’t work in quite the way I
expected

Jacob’s ladder

I think that is fine. It just looks
like the real thing in slow motion

Shoal of fish

That is fine

Undersea model

The behaviour of the fish is very
nice, the frame rate is a little too
fast

Articulating chain

It is very realistic apart from the
fact that you feel you should be
able to move hoops within each
other

Rigid molecule

Yes that is realistic

Deformable molecule

I don’t know what to relate this
to, it gives the feeling of being
a slightly rubbery thing dangling
from a point

Bucky ball

It’s fine

AIG laboratory

That’s fine

Table F.14: Subject 14’s comments
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‘ Name ‘ Case study ‘ Comment ‘
Subject 15 | Newton’s cradle That’s realistic in terms of the
motion. The balls don’t appear
to touch exactly but the motion
is quite calming really. I could
see this being used in a physics
teaching system
Jacob’s ladder The motion seems correct. It is
difficult to see what is holding the
toy though
Shoal of fish Yes, I could believe they are vir-
tual fish
Undersea model That is impressive
Articulating chain The movement seems realistic
Rigid molecule The motion looks realistic. The
position which it was rotating
about was difficult to identify
Deformable molecule | The motion is plausible
Bucky ball I found this to be more realistic
at a slower frame rate
AIG laboratory The motion adds quite alot to the
environment
Comment: An impressive set of demonstrations in
terms of the range of stuff shown

Table F.15: Subject 15’s comments
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